Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)
Chứng minh BĐT phụ:
\(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh
Áp dụng bđt trên, ta có
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)
Vậy..........
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )
a2 + b2 + c2 + 3,5 = a + 2b + 3c
<=> (a2 - a + 0,25) + (b2 - 2b + 1) + (c2 - 3c + 2,25) = 0
<=> (a - 0,5)2 + (b - 1)2 + (c - 1,5)2 = 0
<=> (a; b; c) = (0,5; 1; 1,5)
phân tích đa thức thành nhân tử:
a) 21bc2 - 6c + 3c3 + 42b
b) a2 + b2 + 2a - 2b - 2ab
c) x2 - 5x + 4
a ) Sai đề : \(21bc^2+6c+3c^3+42b\)
\(=3c^2\left(7b+c\right)+6\left(7b+c\right)\)
\(=\left(3c^2+6\right)\left(7b+c\right)\)
\(=3\left(c^2+2\right)\left(7b+c\right)\)
b ) \(a^2+b^2+2a-2b-2ab\)
\(=\left(a^2-2ab+b^2\right)+2\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+2\right)\)
c ) \(x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
a)Sai đề nha bạn
\(21bc^2+6c+3c^3+42b=3c^2\left(7b+3c\right)+6\left(7b+c\right)=\left(3c^2+6\right)\left(7b+c\right)\)
b)\(a^2+b^2+2a-2b-2ab=a^2-2ab+b^2+2a-2b=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
c)\(x^2-5x+4=x^2-x-4x+4=x\left(x-1\right)-4\left(x-1\right)=\left(x-4\right)\left(x-1\right)\)
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
a: \(\left(2a+b-3c\right)^2\)
\(=4a^2+b^2+9c^2+4ab-12ac-6bc\)