Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Leftrightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{bk}{bk-b}\)
\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )
ta có \(\frac{a}{b}< \frac{c}{d}=>ad< bc=>ady< bcy=>ady+abx< bcy+abx\)
\(=>a\left(bx+dy\right)< b\left(ãx+cy\right)=>\frac{a}{b}< \frac{xa+yc}{xb+yd}\left(1\right)\)
ta lại có tương tự \(adx+cdy< bcx+cdy\)
\(=>d\left(ax+cy\right)< c\left(bx+dy\right)=>\frac{xa+yc}{xb+yd}< \frac{c}{d}\left(2\right)\)
từ 1 and 2 => dpcm
1. \(\frac{a}{b}\)cùng dấu thì lớn hơn 0
\(\frac{a}{b}\)khác dấu thì bé hơn 0
2. mik không hiểu đề lắm
1:a/b cùng đấu thì lớn hơn o
a/b khác dấu thì bé hơn o
2: có x =a/m=a+a/2m, y =b/m=b+b/2m
Vì x<y =>a<b=>a+a<a+b=>a+a/2m<a+b/2m=>x<z(1)
Vì a<b =>a+b<b+b=>a+b/2m<b+b/2m=>z<y
Từ đó =>x<z<y
Ta có: \(\frac{a}{m}< \frac{b}{m}\)
Mà m>0 => a<b
Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
Bài 1:
a) \(x^2\le x\)
\(\Leftrightarrow x^2-x\le0\)
\(\Leftrightarrow x\left(x-1\right)\le0\)
Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)
b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)
\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)
\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)