K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Ai mún mk chữa dơ tay

27 tháng 11 2018

@shitbo bn biết làm chữa đi :)

bài này x và a ko chung phân tử làm sao rất gọn được????

5 tháng 5 2020

\(a,5x^3-3x^2+x-x^3-4x^2-x\)

\(=4x^3-7x^2\)

\(b,y^2+2y-2y^2-3y+3\)

\(=-y^2-y+3\)

\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)

\(=\frac{1}{6}x^3-2x^2-5x+1\)

\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)

\(=xy^2+\frac{1}{6}y^2\)

\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)

\(=3xy-\frac{3}{2}z^2y+2zy^2\)

\(g,3^n+3^{n+2}\)

\(=3^n+3^n.3^2\)

\(=3^n\cdot10\)

\(h,1,5\cdot2^n-2^{n-1}\)

\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)

\(=2^n\cdot1\)

\(=2^n\)

\(i,2^n-2^n-2\)

\(=-2\)

\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)

\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)

\(=3^n\cdot\frac{1}{3}\)

\(=\frac{3^n}{3}\)

sẵn bán nick luôn :)

Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !

a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)

b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)

c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)

d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)

e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)

g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )

h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

i, \(2^n-2^n-2=-2\)

k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

Có j sai,mong mọi người góp ý,thông cảm ạ.

11 tháng 10 2015

\(c,Đặt\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=k.b\)

                                       \(\Rightarrow c=d.k\)      

\(-Tacó:\frac{2a-3b}{2a+3b}=\frac{2k.b-3b}{2k.b+3b}=\frac{b.\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)

\(-Tacó:\frac{2c-3d}{2c+3d}=\frac{2d.k-3d}{2d.k+3d}=\frac{d.\left(2k-3\right)}{d.\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)

\(Từ\left(1\right),\left(2\right)\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

27 tháng 9 2019

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)

=> 2x + 7 = 4 

     2x        = 4 - 7 

     2x        = -3

       x        = -3 : 2

       x         = -1,5

   Vậy x = -1,5

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

6 tháng 1 2020

Câu 1 : Đặt A = 1.2.3 + 2.3.4 + ... + 111.112.113 

=> 4A = 1.2.3.4 + 2.3.4.4 + ... + 111.112.113.4

          = 1.2.3.4 + 2.3.4.(5 - 1) + .... + 111.112.113.(114 - 110) 

          = 1.2.34 + 2.3.4.5 - 1.2.3.4 + ... + 111.112.113.114 - 110.111.112.113

          = 111.112.113.114

=> A = 111.113.114.28 = 40 037 256

Câu 2 Đặt A = 1.2 + 2.3 + 3.4 + ... + 277.278

        => 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 277.278.3

                  = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 277.278.(279 - 276)

                  = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 277.278.279 - 276.277.278

                  = 277.278.279 

=> A = 7161558

3) Đặt A = 1.4 + 2.5 + ... + 277.280

= 1.(2 + 2) + 2.(2 + 3) + ... + 277.(278 + 2)

= (1.2 + 2.3 + .... + 277.278) + 2(1 + 2 + .... 277)

Đặt B = 1.2 + 2.3 + .... + 277.278 

     => 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 277.278.3

                  = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 277.278.(279 - 276)

                  = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 277.278.279 - 276.277.278

                  = 277.278.279 

=> B = 7161558

Khi đó A = B +  2(1 + 2 + .... 277)

              = 7161558 + 2.277(277 + 1) : 2

              = 7238564

Câu 4 : \(\left(\frac{2^2}{2.4}+\frac{2^2}{4.6}+...+\frac{2^2}{34.36}\right)x-1\frac{1}{6}=1\frac{2}{3}\)

=> \(2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{34.36}\right)x-\frac{7}{6}=\frac{5}{3}\)

=> \(2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{34}-\frac{1}{36}\right)x=\frac{17}{6}\)

=> \(\left(\frac{1}{2}-\frac{1}{36}\right)x=\frac{17}{12}\)

=> x = 3

Câu 5 : Đặt A = 1 + 2 + 22 + ... + 29 (1) 

=> 2A = 2 + 22 + 23 + ... + 210 (2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = (2 + 22 + 23 + ... + 210) - ( 1 + 2 + 22 + ... + 29)

      A = 210 - 1 = 1024 - 1 = 1023

Câu 6 : Đặt A = 12 + 22 + 32 + .... + 1002

                       = 1.1 + 2.2 + 3.3 + ... + 100.100

                       = 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 100(101 - 1)

                        = (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3 + 4 + ... + 100)

   Đặt B = 1.2 + 2.3 + 3.4 + ... + 100.101

=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3

           = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101(102 - 99)

           = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101

            = 100.101.102

=> B =   343400 

Khi đó A = B - (1 + 2 + 3 + 4 + ... + 100)

              = 343 400 - [100.(100 + 1) : 2]

              = 338 350

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
13 tháng 7 2015

sao giống bài thi quá vậy

13 tháng 7 2015

biết giải bài 2

x/12=y/14=x.y/12.24=98/288=49/144

=> x/12=49/144=> 49/12

=> y/14=49/144=> 343/72

mới lớp 2 thôi