K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban

Có biểu thức \(A=2x\left(x+2y\right)-x+4-2y\)

a) Thay \(x=-1;y=2\) vào biểu thức trên, ta có :

\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]-\left(-1\right)+4-2.2\)

\(A=\left(-2\right)+3+1+4-4=\left(-2\right)+4=2\)

b) Xét 2 trường hợp của \(|y|=3:y=3;y=-3\) và thay x = 1 vào các biểu thức

Có TH1 : \(A=2.1\left(1+2.3\right)-1+4-2.1=12-1+4=15\). TH2 :

 \(A=2.1\left[1+2\left(-3\right)\right]-1+4-2.\left(-3\right)=\left(-10\right)-1+4-\left(-6\right)=-1\)

c) Thay \(x=-2y\) vào biểu thức, ta có : \(A=2x\left[\left(-2y\right)+2y\right]-x+4+x\)

\(A=2x.0+\left(x-x\right)+4=0+0+4=4\)

Ôí chồi chồi chồi ! 

\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]....\)

''....'' lak vế sau 

Cậu giỏi ghê, bên trên lak nhân DẤU nhân đấy.

22 tháng 6 2020

 \(A=\left(x-1\right)^2+|y+3|+1\)

Ta thấy : \(\left(x-1\right)^2\ge0\)

\(|y+3|\ge0\)

Suy ra \(\left(x-1\right)^2+|y+3|+1\ge1\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

Vậy \(Min_A=1\)khi \(x=1;y=-3\)

22 tháng 6 2020

\(B=|x^2-1|+\left(x+1\right)^2+y^2\)

Ta dễ dàng nhận thấy :

 \(|x^2-1|\ge0\)

\(\left(x+1\right)^2\ge0\)

\(y^2\ge0\)

Cộng vế với vế ta được \(|x^2-1|+\left(x+1\right)^2+y^2\ge0\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-1=0\\x+1=0\\y=0\end{cases}< =>\hept{\begin{cases}x=\pm1\\x=-1\\y=0\end{cases}< =>\hept{\begin{cases}x=-1\\y=0\end{cases}}}}\)

Vậy \(Min_B=0\)khi \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

15 tháng 10 2020

A = 1,7 + | 3,4 - x |

Ta có : | 3, 4 - x | ≥ 0 ∀ x => 1, 7 + | 3, 4 - x | ≥ 1, 7 ∀ x

Dấu "=" xảy ra <=> 3, 4 - x = 0 => x = 3, 4

=> MinA = 1, 7 <=> x = 3, 4

B = -| 1, 4 - x | - 2

Ta có : -| 1, 4 - x | ≤ 0 ∀ x => -| 1, 4 - x | - 2 ≤ -2 ∀ x

Dấu "=" xảy ra <=> 1, 4 - x = 0 => x = 1, 4

=> MaxB = -2 <=> x = 1, 4

22 tháng 7 2018

\(4^2.25^2+\frac{32.125}{2^3.5^2}\)

\(=\left(2^2\right)^2.\left(5^2\right)^2+\frac{2^5.5^3}{2^3.5^2}\)

\(=2^4.5^4+2^2.5\)

\(=10^4+20\)

\(=10020\)

14 tháng 4 2020

a)Thu gọn đơn thức:

B=4x2y2z(-3x2z)

B=16xyz(-6xz)

B=-96x2yz2

Hệ số:-96

Phần biến: x2yz2

b)Thay x=-2,y=-1,z=1 vào B=-96x2yz2

B=-96*(-2)2*(-1)*12

B=-96*4*(-1)*1

B=-96*(-4)

B=384

Câu c) hình như sai đề :DD

29 tháng 4 2020

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm E, Trên tia đối của tia CB lấy điểm N sao cho EB = BC = CN

a)Chứng minh rằng tam giác AEN cân

b)kẻ BH vuông góc với AE (H thuộc cạnh AE)

kẻ CK vuông góc với AN (K thuộc cặp AN)

Chứng minh rằng tam giác HBE bằng tam giác KCN

 
 
 
6 tháng 8 2019

a,Ta cần tìm hệ số tỉ lệ nghịch của y đối với x,từ đó tìm được giá trị của y khi x = 6,x = -10

Vì x và y là hai đại lượng tỉ lệ nghịch,nên ta có công thức tổng quát :

\(y=\frac{a}{x}\)

Thay x = 8 và y = 15 ta có : \(15=\frac{a}{8}\Leftrightarrow a=15\cdot8=120\)

Do đó : \(y=\frac{120}{x}\)

b,x = 6 thì y = \(\frac{120}{6}=20\) ;x = -10 thì y = \(\frac{120}{-10}=-12\)

c, y = 2 thì \(2=\frac{120}{x}\Leftrightarrow x=60\) ; y = -30 thì \(-30=\frac{120}{x}\Leftrightarrow x=-40\)

27 tháng 3 2020

a)15:8

b)6:15;-10:15

c)8:2;-30:15

mình chỉ làm bừa thôi nếu sai thì đừng chửi mình nhé