Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có biểu thức \(A=2x\left(x+2y\right)-x+4-2y\)
a) Thay \(x=-1;y=2\) vào biểu thức trên, ta có :
\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]-\left(-1\right)+4-2.2\)
\(A=\left(-2\right)+3+1+4-4=\left(-2\right)+4=2\)
b) Xét 2 trường hợp của \(|y|=3:y=3;y=-3\) và thay x = 1 vào các biểu thức
Có TH1 : \(A=2.1\left(1+2.3\right)-1+4-2.1=12-1+4=15\). TH2 :
\(A=2.1\left[1+2\left(-3\right)\right]-1+4-2.\left(-3\right)=\left(-10\right)-1+4-\left(-6\right)=-1\)
c) Thay \(x=-2y\) vào biểu thức, ta có : \(A=2x\left[\left(-2y\right)+2y\right]-x+4+x\)
\(A=2x.0+\left(x-x\right)+4=0+0+4=4\)
Ôí chồi chồi chồi !
\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]....\)
''....'' lak vế sau
Cậu giỏi ghê, bên trên lak nhân DẤU nhân đấy.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
x + y = 3y
=> x= 3y-y
\(\frac{1}{x}\)= \(\frac{1}{3y-y}\)
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{3y-y}\)+\(\frac{1}{y}\)
= \(\frac{y}{y\left(3y-y\right)}+\frac{3y-y}{y\left(3y-y\right)}\)=\(\frac{y+3y-y}{3y^2-y^2}\)=\(\frac{3y}{y^2\left(3-1\right)}=\frac{3}{2y}\)
Ta có x+y=3y
\(\Rightarrow x=2y\)
Thay vào ta có
\(\frac{1}{2y}+\frac{1}{y}=\frac{1}{2y}+\frac{2}{2y}=\frac{3}{2y}\)