Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có hệ sau :
\(\hept{\begin{cases}a.3^2+b.3-1=-7&-\frac{b}{2a}=1&\end{cases}\Leftrightarrow\hept{\begin{cases}9a+3b=-6\\b=-2a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=4\end{cases}}}\)
vậy \(2a+b=0\)
Biết rằng parabol (P): y=ax2+bx-1 qua điểm A(3;-7) và có hoành độ đỉnh bằng 1. Tính giá trị của biểu thức 2a+b . Các bạn ơi đề bài bị sai dề bài này mới chính xác
(P) có đỉnh là I(-1;5) => \(-\frac{b}{2a}=-1\Rightarrow b=2a\) (1)
và (P) đi qua I(-1; 5) => tại x = -1; y = 5 thì a - b + c = 5 (2)
(P) đi qua điểm A(1; 1) => tại x = 1; y = 1 thì a + b + c = 1(3)
thế (1) vào (2): -a + c = 5
thế (1) vào (3): 3a + c = 1
giải hệ phtrinh ta được a = -1; c = 4
=> b = 2a = -2
giá trị biểu thức 3a + 2b + c = -3 - 4 + 4 = -3
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)