K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.a)Tính các đoạn EB, EC.b) Chứng minh:  SABE/SACE = AB/AC.c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.a)Hãy viết tỉ lệ thức trong trường hợp trên .b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ...
Đọc tiếp

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.

a)Tính các đoạn EB, EC.

b) Chứng minh:  SABE/SACE = AB/AC.

c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.

Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.

a)Hãy viết tỉ lệ thức trong trường hợp trên .

b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức trong trường hợp này.

c)Gọi BE là phân giác góc B , hãy viết tỉ lệ thức từ phân giác này .

d) Dựa vào các kết quả trên , chứng minh rằng: DB/DC. FB/FA. EA/EC = 1.

Bài 4. Cho tam giác ABC vuông tại A có AD là phân giác góc A . Kẻ DE // AC ( E  thuộc AB ). Biết AB = 21cm , AC = 28cm.

Tính độ dài các đoạn DB , DC và DE

Bài 5. Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .

 a)Chứng minh rằng: GE/GD = HF/HD

b) Xác định vị trí của GH và EF ?

 

0
7 tháng 1 2022

Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm. a) Chứng minh tam giác ABC vuông tại A. b) Vẽ tia phân giác BD (D thuộc AC). Vẽ tia phân giác BD (D thuộc AC), từ D vẽ DE vuông góc với BC (E thuộc BD). AD cắt AB tại F, ED cắt AB tại F. Chứng minh DA = DE và DF > DE  Phần c

7 tháng 1 2022

nhầm nha

17 tháng 6 2020

a) 

Xét \(\Delta\)HBA và \(\Delta\)HAC 

có: ^BHA = ^AHC = 90 độ 

^HBA = ^HAC ( cùng phụ ^HAB ) 

=> \(\Delta\)HBA ~ \(\Delta\)HAC 

b) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)cm

=> \(S\left(ABC\right)=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

=> \(AH=\frac{6.8}{10}=4,8\)cm

c) Tích chất phân giác

=> \(\frac{AB}{BC}=\frac{AD}{DC}\Rightarrow\frac{AD}{6}=\frac{DC}{10}=\frac{AD+DC}{6+10}=\frac{8}{16}=\frac{1}{2}\)

=> AD = 3 cm; DC = 5 cm 

Theo pi ta go trong \(\Delta\)ADB => \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=3\sqrt{5}\)

17 tháng 6 2020

                                                A B C D H

a) \(\Delta ABC\)vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)

\(\Delta AHC\)vuông tại H \(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)

\(\Rightarrow\widehat{HAC}=\widehat{ABC}\)

Xét \(\Delta HBA\)và \(\Delta HAC\)có:+) \(\widehat{AHB}=\widehat{AHC}=90^o\)

                                                    +) \(\widehat{HAC}=\widehat{ABC}\)

\(\Rightarrow\Delta HBA~\Delta HAC\left(g-g\right)\)( đpcm )

b) \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Xét \(\Delta ABC\)có: \(S=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)

c) \(\Delta ABC\)có BD là phân giác \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{6}{10}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)

\(\Rightarrow DC=5.1=5\)\(AD=3.1=3\)

Xét \(\Delta ABD\)vuông tại A \(\Rightarrow AB^2+AD^2=BD^2\)( định lý Pytago )

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=\sqrt{54}=3\sqrt{6}\)

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO

22 tháng 5 2020

giúp mình câu c, thanks

17 tháng 5 2020

AMAM là đường trung tuyến ứng với cạnh huyền nên AM=BC2=BMAM=BC2=BM

⇒△MAB⇒△MAB cân tại MM

⇒BAMˆ=MBAˆ⇒BAM^=MBA^

Ta có:

BADˆ=DAMˆ−BAMˆ=900−MBAˆ=900−HBAˆBAD^=DAM^−BAM^=900−MBA^=900−HBA^

HABˆ=900−HBAˆHAB^=900−HBA^

⇒BADˆ=HABˆ⇒BAD^=HAB^ nên ABAB là tia phân giác DAHˆDAH^ (đpcm)

b)

Xét tam giác CADCAD và ABDABD có:

DˆD^ chung

ACDˆ=900−ABHˆ=BADˆACD^=900−ABH^=BAD^

⇒△CAD∼△ABD⇒△CAD∼△ABD (g.g)

⇒CAAB=ADBD=CDAD⇒CAAB=ADBD=CDAD

⇒CA2AB2=CDBD(∗)⇒CA2AB2=CDBD(∗)

Dễ thấy △BAH∼△BCA△BAH∼△BCA (g.g) và △CAH∼△CBA△CAH∼△CBA (g.g)

⇒BABC=BHBA⇒BABC=BHBA và CACB=CHCACACB=CHCA

⇒AB2=BC.BH⇒AB2=BC.BH và AC2=CH.BCAC2=CH.BC

⇒AC2AB2=CHBH(∗∗)⇒AC2AB2=CHBH(∗∗)

Từ (∗);(∗∗)⇒CDBD=CHBH(∗);(∗∗)⇒CDBD=CHBH

⇒CD.BH=CH.BD⇒CD.BH=CH.BD (đpcm)

8 tháng 4 2020

a) xét tam giác ABF zà tam giác ACB có

BAC chung 

ABF= ACB (gt)

=> tam giác ABF= tam giác ACB (g.g)

\(=>\frac{AF}{AB}=\frac{AB}{AC}=>\frac{AF}{AB}=\frac{4}{8}=>AF=2\)

ta có AF+FC=AC

=> 2+FC=8

=>FC=6

b) D là trung điểm của BC ( AD là trung tuyến của tam giác ABC 

=>\(DC=\frac{1}{2}BC\)

kẻ đường cao AH

ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.AB}{\frac{1}{2}.AH.DC}=\frac{AB}{DC}=\frac{AB}{\frac{1}{2}AB}=2\)

\(=>S_{ABC}=2S_{ADC}\)

c) tam giác CKA có OF//KA nên theo đ/l ta lét có

\(\frac{FC}{FA}=\frac{OC}{OK}\left(1\right)\)

tam giác OCI có KA//CI nên theo hệ quả đ/l ta lét ta có

\(\frac{OC}{OK}=\frac{CI}{KA}\left(2\right)\)

từ 1 zà 2 \(=>\frac{FC}{FA}=\frac{CI}{KA}\)

8 tháng 4 2020

lại câu c nhé

c) ta có Cx//BF nên theo đ.l ta lét ta đc

\(\frac{FC}{FA}=\frac{OI}{OA}\)

Cx//AY( hệ quả ta lét )=>\(\frac{OI}{OA}=\frac{CJ}{JA}\Leftrightarrow\frac{FC}{FA}=\frac{CI}{JA}\)

tương tự ta có 

\(\frac{DB}{DC}=\frac{BO}{CI}\left(hệ\right)quả\)

\(\frac{FC}{FA}=\frac{CI}{JA}\left(cmt\right)\)

mặt khác Ay//FB ta có

\(\frac{EA}{EB}=\frac{JA}{BO}=>\frac{DB}{DC}.\frac{FC}{FA}.\frac{EA}{EB}=\frac{BO}{CI}.\frac{CI}{JA}.\frac{JA}{BO}=1\)(dpcm)