Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^3-4n^2-2n+15=n^3-3n^2-n^2+3n-5n+15\)
\(=\left(n-3\right)\left(n^2-n-5\right)\)
Để \(n^3-4n^2-2n+15\)là số nguyên tố thì
\(\orbr{\begin{cases}n-3=1\\n^2-n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=4\\n=3\end{cases}}\)(vì \(n\)là số tự nhiên)
Với \(n=4\): \(n^3-4n^2-2n+15=7\)là số nguyên tố, thỏa mãn.
Với \(n=3\): \(n^3-4n^2-2n+15=0\)không là số nguyên tố, loại.
n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)
Để biểu thức là số nguyên tố thì nó chỉ chia hết cho 1 và chính nó
Tức là chỉ chia hết cho n-1 hoặc (n2−3n+1)(n2−3n+1) hoặc(n−1)(n2−3n+1)(n−1)(n2−3n+1)
Suy ra: n - 1 = 1 hoặc n2−3n+1=1n2−3n+1=1
=> n=2 hoặc n=0 hoặc n = 3
Trong 3 kết quả ta chỉ nhận n =3. Khi đó biểu thức có giá trị là 2 (số nguyên tố)
Đáp số n = 3
= (n3 -1 ) - (4n2 -4n)
=(n-1).(n2 + n +1) - 4n.(n-1)
= (n-1).(n2-3n+1)
\(A=n^3-4n^2+4n-1\)
\(=\left(n^3-1^3\right)-\left(4n^2-4n\right)=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-n+1-4n\right)\)
\(=\left(n-1\right)\left(n^2-5n+1\right)\)
câu 1:
đặt p= n3-4n2+4n-1 = (n-1)(n2-3n+1), để p là số nguyên tố thì hoặc n-1=1 hoặc (n2-3n+1) =1.
- TH1: n-1=1 =>n=2 => p= -1(loại)
- TH2: n2-3n+1=1 => n=3 => p=2( là số nguyên tố) hoặc n=0 =>p= -1(loại)
vậy n = 3 thì biểu thức trên là số nguyên tố.
thay từ 0 --->100 đi bạn :D
bạn sẽ tìm ra dc đáp án n=
Đặt \(A=n^3-4n^2+4n-1\)
\(\Rightarrow A=\left(n^3-1\right)-\left(4n^2-4n\right)\\ =\left(n-1\right)\left(n^2+n+1\right)-\left(4n\left(n-1\right)\right)\\ =\left(n-1\right)\left(n^2+n+1-4n\right)\)
Tích của 2 số là số nguyên tố khi một tích phải bằng 1
Mà n nhỏ nhất nên => n-1=1 => n=2
n=2 => A= 7 là số nguyên tố