Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Hai đường thẳng // khi
\(\hept{\begin{cases}m^2-1=3\\m\ne2\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\left(l\right)\\m=-2\end{cases}}\)
b/ Hai đường thẳng cắt nhau khi
\(m^2-1\ne3\Leftrightarrow\orbr{\begin{cases}m\ne2\\m\ne-2\end{cases}}\)
c/ Hai đường thẳng trùng nhau khi
\(\hept{\begin{cases}m^2-1=3\\m=2\end{cases}}\Leftrightarrow m=2\)
d/ Hai đường thẳng vuông góc khi
(m2 - 1).3 = 1
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{2}{\sqrt{3}}\\m=\frac{-2}{\sqrt{3}}\end{cases}}\)
a) Giả sử d1 trùng d2 => có m để
=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)
=> d1 khong trùng với d2
b)
+d1//d2 => m=3
+d1 cắt d2 => m\(\ne\)3
+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
b: Vì (d3)//(d2) nên a=-2
=>(d3): y=-2x+b
Thay x=3 vào (d1), ta được:
\(y=\dfrac{2}{3}\cdot3+2=4\)
Thay x=3 và y=4 vào (d3),ta được:
b-6=4
=>b=10
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{2}{3}x+2=-2x+1\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{8}\\y=2\cdot\dfrac{3}{8}+1=\dfrac{7}{4}\end{matrix}\right.\)
Hoành độ giao điểm \(d_1;d_2\)là nghiệm của phương trình \(2x-3=x-2\Rightarrow x=1\Rightarrow y=-1\Rightarrow A\left(1;-1\right)\)
Hoành độ giao điểm \(d_2;d_3\)là nghiệm của phương trình \(x-2=4x-2\Rightarrow x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\)
Hoành độ giao điểm \(d_1;d_3\)là nghiệm của phương trình \(2x-3=4x-2\Rightarrow x=-\frac{1}{2}\Rightarrow y=-4\Rightarrow C\left(-\frac{1}{2};-4\right)\)
Gọi \(G\left(\frac{x_A+x_B+x_C}{3};\frac{y_A+y_B+y_C}{3}\right)\)là trọng tâm tam giác ABC
Khi đó \(\frac{x_A+x_B+x_C}{3}=\frac{1+0-\frac{1}{2}}{3}=\frac{1}{6}\)
\(\frac{y_A+y_B+y_C}{3}=\frac{-1-2-4}{3}=-\frac{7}{3}\)
Vậy \(G\left(\frac{1}{6};-\frac{7}{3}\right)\)
Để d1 // d2 khi \(\hept{\begin{cases}m^2-1=5-m\\m+2\ne2m+5\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+m-6=0\\m\ne-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=2;m=-3\\m\ne-3\end{cases}}\Leftrightarrow m=2\)
a: Để hai đường song thì 3/2m-1=m+2 và 1-2m<>m-3
=>1/2m=3 và -3m=-4
=>m=6
b: Để (d1) vuông góc với (d2) thì (3/2m-1)(m+2)=-1
\(\Leftrightarrow\left(3m-2\right)\left(m+2\right)=-2\)
\(\Leftrightarrow3m^2+6m-2m-4+2=0\)
=>3m^2+4m-2=0
=>\(m\in\left\{\dfrac{-2+\sqrt{10}}{3};\dfrac{-2-\sqrt{10}}{3}\right\}\)