Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi giúp mình vs
tìm x,y, z nguyên thỏa mãn
x^3 + xyz = 957
y^3 + xyz = 759
z^3 + xyz = 579
\(\Leftrightarrow x-3\sqrt{x}-\sqrt{x-8}+1=0\)
\(\Leftrightarrow x=9\left(tm\right)\)
bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
Điều kiện xác định
\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)
=> Tập xác định là tập rỗng
Vậy pt vô nghiệm
Bài 2 :
b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)
ĐKXĐ : \(x\ge1\)
Pt(1) tương đương :
\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)
Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)
\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)
Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\) ( Thỏa mãn )
Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)
Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\Leftrightarrow2=2\) ( Luôn đúng )
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)
Bài 1 :
a) ĐKXĐ : \(-1\le a\le1\)
Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)
\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)
\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)
Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)
b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :
\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)
Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)
Bài làm:
a) \(A=\sqrt{4}-2\sqrt{3}+\sqrt{7}-4\sqrt{3}\)
\(A=2+\sqrt{7}-6\sqrt{3}\)
b) \(B=\sqrt{3}+\sqrt{8}+\sqrt{3}-\sqrt{8}\)
\(B=2\sqrt{3}\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x-16}=a\\\sqrt[3]{x+13}=b\end{cases}}\)
\(\Rightarrow b^3-a^3=29\)
Từ đó ta có hệ \(\hept{\begin{cases}1+a=b\\b^3-a^3=29\end{cases}}\)
Thế pt đầu vào pt sau ta được
\(a^3+3a^2+3a+1-a^3=29\)
\(\Leftrightarrow3a^2+3a-28=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{-3+\sqrt{345}}{6}\\a=\frac{-3-\sqrt{345}}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=\frac{3+\sqrt{345}}{6}\\b=\frac{3-\sqrt{345}}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{31\sqrt{345}+27}{18}\\x=\frac{-31\sqrt{345}+27}{18}\end{cases}}\)
Lời giải:
a)
ĐK: $x\ge -1$
PT \(\Leftrightarrow x^2+4x+5-\sqrt{x+1}=0\)
\(\Leftrightarrow x^2+3x+\frac{9}{4}+(x+1)-\sqrt{x+1}+\frac{1}{4}+\frac{5}{2}=0\)
\(\Leftrightarrow (x+\frac{3}{2})^2+(\sqrt{x+1}-\frac{1}{2})^2+\frac{5}{2}=0\)
\(\Leftrightarrow (x+\frac{3}{2})^2+(\sqrt{x+1}-\frac{1}{2})^2=\frac{-5}{2}< 0\) (vô lý vì vế trái luôn không âm với mọi $x\geq -1$)
Do đó PT vô nghiệm.
b) ĐK: $x\geq -2$
PT \(\Leftrightarrow 2\sqrt{(x+2)(x-1)^2}=3\sqrt{(x+2)(x^2-2x+4)}\)
\(\Leftrightarrow \sqrt{x+2}(2\sqrt{(x-1)^2}-3\sqrt{x^2-2x+4})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x+2}=0\\ 2\sqrt{(x-1)^2}=3\sqrt{x^2-2x+4}\end{matrix}\right.\)
Nếu $\sqrt{x+2}=0\Rightarrow x=-2$ (thỏa mãn)
Nếu $2\sqrt{(x-1)^2}=3\sqrt{x^2-2x+4}$
$\Rightarrow 4(x-1)^2=9(x^2-2x+4)$ (bình phương 2 vế)
$\Leftrightarrow 4(x-1)^2=9(x-1)^2+27$
$\Leftrightarrow 5(x-1)^2=-27< 0$ (vô lý- loại)
Vậy PT có nghiệm $x=-2$ duy nhất.