Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x^3-3.x^2.1+3.x.1^2-1^3\right)\)
\(=-\left(x-1\right)^3\)
\(b,8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)
\(a,x^3+12x^2+48x+64=x^3+3.x^2.4+3.x.4^2+4^3=\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)
\(b,x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3=\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)
C/ Số số hạng của dãy trên là:
(x - 1) + 1 = x (số hạng)
Tổng dãy trên là: x.(x + 1) / 2 = 55
=> x.(x + 1) = 55 x 2
=> x .(x + 1) = 110
=> x .(x + 1) = 10.11
=> x = 10
c) (x+1).x:2=55
(x+1).x=110
Tích của 2 số liên tiếp bằng 110
=>x=10
\(3x^3-48x=0\)
\(3x\cdot\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\left\{\pm4\right\}\end{cases}}\)
Vậy,............
B(x) + C(x)=
( 12x4 + 6x3 - \(\frac{1}{2}\)X+ 3)+(-12x4 - 2x3 + 5x + \(\frac{1}{2}\))
=12x4 + 6x3 - \(\frac{1}{2}\)X+ 3-12x4 - 2x3 + 5x + \(\frac{1}{2}\)
=(12x4-12x4)+(6x3-2x3)+(-\(\frac{1}{2}\)+ \(\frac{1}{2}\))+3+5x
=4x3+3+5x
B(x) - C(x)=
( 12x4 + 6x3 - \(\frac{1}{2}\)X+ 3)-(-12x4 - 2x3 + 5x + \(\frac{1}{2}\))
=12x4 + 6x3 - \(\frac{1}{2}\)X+ 3+12x4 + 2x3 - 5x - \(\frac{1}{2}\)
=(12x4+12x4)+(6x3+2x3)+(-\(\frac{1}{2}\)- \(\frac{1}{2}\))+3-5x
=24x4+8x3-1+3-5x
=24x4+8x3+(-1+3)-5x
=24x4+8x3+2-5x
Để \(M=5xy^3+4x^2y^2-12x^3y\\ \) và \(A=x\left(x^3+12x^2y-5y^3\right)\) ko âm
\(\Rightarrow\)\(M+A\)cũng đồng thời >0
\(\Rightarrow\)\(M+A=\left(5xy^3+4x^2y^2-12x^3y\right)+\left(x^4+12x^3y-5y^3x\right)\)
\(\Rightarrow\)\(M+A=\left(5xy^3-5xy^3\right)-\left(12x^3y-12x^{3y}\right)+\left(x^4+4x^2y^2\right)\)
\(\Rightarrow M+A=x^4+4x^2y^2\)
Mà \(x^4\ge0\) \(;4x^2y^2\ge0\)
\(\Rightarrow\)\(x^4+4x^2y^2\ge0\)
\(\Rightarrow\)\(M+A\ge0\)
1/
$(x-1)^{x+10}=(x-1)^{x+8}$
$\Rightarrow (x-1)^{x+10}-(x-1)^{x+8}=0$
$\Rightarrow (x-1)^{x+8}(x^2-1)=0$
$\Rightarrow (x-1)^{x+8}=0$ hoặc $x^2-1=0$
Nếu $(x-1)^{x+8}=0\Rightarrow x-1=0\Rightarrow x=1$
Nếu $x^2-1=0\Rightarrow x^2=1=1^2=(-1)^2\Rightarrow x=1$ hoặc $x=-1$
Vậy $x=1$ hoặc $x=-1$
2/
$1^3+2^3+3^3+...+10^3=(x+1)^2$
Ta có công thức quen thuộc:
$1^3+2^3+...+n^3=(1+2+...+n)^2=\frac{[n(n+1)]^2}{4}$
Bạn có thể xem cm tại đây:
https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
$1^3+2^3+...+10^3=(x+1)^2$
$\Rightarrow \frac{[10(10+1)]^2}{4}=(x+1)^2$
$\Rightarrow 3025=(x+1)^2$
$\Rightarrow x+1=55$ hoặc $x+1=-55$
$\Rightarrow x=54$ hoặc $x=-56$
bằng (x + 4)3