K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

Đầu bài sai rồi . Làm gì có 2 ở vế phải

23 tháng 3 2016

mình ghi lộn(-) chứ không phải(+) mình sửa lại rùi đó

27 tháng 3 2016

Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)

\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)

Đẳng thức này đúng với mọi số x,y,z

Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)

28 tháng 3 2016

x,y,z phải là các cạnh trong tam giác chơ

10 tháng 8 2017

Hình như sai đề

11 tháng 8 2017

thế ề như nào bạn

23 tháng 1 2017

Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)

Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

Vậy ta có đpcm

5 tháng 7 2019

Xét tích : \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)

=\(x^3\left(z-y\right)+x^2\left(z-y\right)\left(z+y\right)+y^3\left(x-z\right)+y^2\left(x-z\right)\left(x+z\right)\)

\(+z^3\left(y-x\right)+z^2\left(y-x\right)\left(y+x\right)\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2\left(z^2-y^2\right)+y^2\left(x^2-z^2\right)+z^2\left(y^2-x^2\right)\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2z^2-x^2y^2+y^2x^2-y^2z^2+z^2y^2-z^2x^2\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)

Như vậy:

 \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)

<=> \(\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)

Ta có: \(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{xz}+\frac{z\left(y-x\right)}{xy}}\)

 \(=\frac{\frac{x^3\left(z-y\right)}{xyz}+\frac{y^3\left(x-z\right)}{xyz}+\frac{z^3\left(y-x\right)}{xyz}}{\frac{x^2\left(z-y\right)}{xyz}+\frac{y^2\left(x-z\right)}{xyz}+\frac{z^2\left(y-x\right)}{xyz}}\)

\(=\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)