Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+2018x^2−2017x+2018
=(x^4+x)+(2018x^2−2018x+2018)
=x(x^3+1)+2018(x^2−x+1)
=x(x+1)(x^2−x+1)+2018(x^2−x+1)
=(x^2−x+1)[x(x+1)+2018]
=(x^2−x+1)(x^2+x+2018)
=(x^2−x+1)(x^2+x+2018)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
x^4+2018x^2+2017x+2018
=(x^4-x)+(2018x^2+2018x+2018)
=x(x^3-1)+2018(x^2+x+1)
=x(x-1)(x^2+x+1)+2018(x^2+x+1)
=(x^2+x+1)(x^2-x+2018)
\(\text{a) }4x^{16}+81=4x^4+36x^2+81-36x^8\)
\(=\left(4x^{16}+36x^8+81\right)-36x^8\)
\(=\left[\left(2x^8\right)^2+2.2x^8.9+9^2\right]+\left(6x^4\right)^2\)
\(=\left(2x^8+9\right)^2-\left(6x^4\right)^2\)
\(=\left(2x^8+9-6x^4\right)\left(2x^8+9+6x^4\right)\)
\(\text{b) }x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x\left(x^3-1\right)-2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2-x\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
BPT\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1\right)-\left(2017x^2+2018\right)\left(4-5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1-4+5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(7x-5\right)\ge0\)
DO 2017x2+2018 luôn luôn lớn hơn 0
ĐỂ B PT \(\ge\)0\(\Leftrightarrow7x-5\ge0\)
\(\Leftrightarrow x\ge\frac{5}{7}\)
vậy ...........
\(x^4+2018x^2+2017x+2018\)
\(\Rightarrow x^4+2018x^2+2018x-x+2018\)
\(\Rightarrow\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(\Rightarrow x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
Ta có : x4 + 2018x2 + 2017x + 2018
= x4 - x + 2018x2 + 2018x + 2018
= x(x3 - 1) + 2018(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 2018(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2018)
x4+2018x2+2017x+2018=x4+2018x2+2018x-x+2018
=x(x3-1)+2018(x2+x+1)=(x2+x+1)(x2-x+2018)
Ktra xem mk có nhầm chỗ nào ko nhé. Cảm ơn bạn
\(x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=x^4-x+2018x^2+2018x+2018\)
\(=x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2018\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)