Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x4 + 2018x2 + 2017x + 2018
= x4 - x + 2018x2 + 2018x + 2018
= x(x3 - 1) + 2018(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 2018(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2018)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
\(x^4+2018x^2+2017x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x.\left(x^3-1\right)+2018.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2018.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
a) \(3x^2+8x-11\)
\(=3x^2-3+11x-11\)
\(=\left(3x^2-3x\right)+\left(11x-11\right)\)
\(=3x\left(x-1\right)+11\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+11\right)\)
b) \(x^4+2018x^2-2017x+2018\)
\(=\left(x^4+x\right)+\left(2018x^2-2018x+2018\right)\)
\(=x\left(x^3+1\right)+2018\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2018\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2018\right]\)
\(=\left(x^2-x+1\right)\left(x^2+x+2018\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2018\right)\)
a) 3x2 + 8x - 11
=3x2+11x-3x-11
=x(3x+11)-(3x+11)
= (x-1)(3x+11)
a,\(x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)2x-2x+2\(x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)+2\left(x-1\right)\)
=\(\left(x^4-x^3+2x^2-2x+2\right)\left(x-1\right)\)
b,
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
Nhớ k mk nha
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
chúc cậu hok tốt _@
\(x^4+2018x^2+2017x+2018\)
\(\Rightarrow x^4+2018x^2+2018x-x+2018\)
\(\Rightarrow\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(\Rightarrow x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
\(\text{a) }4x^{16}+81=4x^4+36x^2+81-36x^8\)
\(=\left(4x^{16}+36x^8+81\right)-36x^8\)
\(=\left[\left(2x^8\right)^2+2.2x^8.9+9^2\right]+\left(6x^4\right)^2\)
\(=\left(2x^8+9\right)^2-\left(6x^4\right)^2\)
\(=\left(2x^8+9-6x^4\right)\left(2x^8+9+6x^4\right)\)
\(\text{b) }x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x\left(x^3-1\right)-2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2-x\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)