Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∆ ⊥ ( α ) ⇒ a ∆ → = a α → = (2; −1; 1)
Phương trình tham số của ∆ là
Phương trình chính tắc của ∆ là:
Xét phương trình:
2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2
Vậy đường thẳng d cắt mặt phẳng ( α ) tại điểm M(2; 1/2; −7/2).
Ta có vecto pháp tuyến của mặt phẳng ( α ) và vecto chỉ phương của đường thẳng d lần lượt là n α → = (2; 1; 1) và a d → = (2; 1; −3).
Gọi a ∆ → là vecto pháp tuyến của Δ, ta có a ∆ → ⊥ n α → và a ∆ → ⊥ a d →
Suy ra a ∆ → = n α → ∧ n d → = (−4; 8; 0) hay a ∆ → = (1; −2; 0)
Vậy phương trình tham số của ∆ là
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
Đáp án D
Đường thẳng d vuông góc với mặt phẳng (α) nên nhận véc-tơ làm véc-tơ chỉ phương.
Suy ra, phương trình đường thẳng d: .
Đáp án D
Mặt phẳng (P) có vecto pháp tuyến là: n p → (3; 1; 0)
Vì đường thẳng d vuông góc với mặt phẳng (P) nên đường thẳng d có vecto chỉ phương là: u d → = n p → (3; 1; 0)
Phương trình tham số của đường thẳng d:
Chọn D.
B C A D H K J S
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)
Chọn C
Gọi giao điểm của Δ và d là B nên ta có: B (3+t;3+3t;2t)
Vì đường thẳng Δ song song với mặt phẳng (α) nên:
Phương trình đường thẳng Δ đi qua A và nhận
Đường thẳng d vuông góc với mp α x+y-z+5=0 nên đường thẳng d có vecto chỉ phương n → = 1 ; 1 ; - 1
Vậy pt tham số của đường thẳng d là: x = 2 + t y = - 1 + t z = 3 - t