Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng CT: \(\dfrac{hc}{\lambda}=\dfrac{hc}{\lambda_0}+W_đ\)
\(\Rightarrow W_đ= \dfrac{hc}{\lambda}-\dfrac{hc}{\lambda_0}= \dfrac{3hc}{\lambda_0}-\dfrac{hc}{\lambda_0}=\dfrac{2hc}{\lambda_0}\)
Chu kỳ dao động nhỏ của con lắc là
\(T=2\pi\sqrt{\frac{l}{9}}\Rightarrow T=2\pi\sqrt{\frac{0,36}{\pi^2}}=1,2\left(s\right)\)
Chọn A
\(T=2\pi\sqrt{\frac{l}{g}}\)
\(T'=2\pi\sqrt{\frac{l'}{g}}\)
\(\Rightarrow\frac{T'}{T}=\sqrt{\frac{l'}{l}}=\sqrt{2}\Rightarrow T'=2\sqrt{2}s\)
Theo bài ta có:
Chu kì lúc ban đầu:
\(T=2\pi\sqrt{\frac{l}{g}}\)
Lúc sau:
\(T'=\left(T-0,4\right)=2\pi\sqrt{\frac{l-0,44}{g}}\)
Giải ra:
\(T-T'=0,4;T+T'=\frac{0,44T^2}{0,4l}=4,4\)
Ta có: T = 2,4 => T' = 2 (s)
ban đầu T=0,4s => omega = 5p i=> deta lo =4 cm
=> t= T/4+T/4+T/12=7T/12=7/30s
Vật thực hiện 10 dao động mất 20s:
\(T=\frac{t}{n}=2s\Rightarrow g=4\pi^2\frac{l}{T^2}=9,86m/s^2\)
Đáp án C
Đáp án A
Phương pháp: Sử dụng công thức tính chu kì dao động của con lắc đơn và công thức tính sai số trong thực hành thí nghiệm
Cách giải :
Công thức xác định độ lớn gia tốc trọng trường:
Ta có: