K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

a.có 18 HLP nhỏ có mặt được sơn xanh,1 HLP nhỏ có 1 mặt sơn xanh

b.có 24 HLP nhỏ được sơn đỏ ,có 12 HLP nhỏ đc sơn đỏ 2 mặt,12 HLP nhỏ đc sơn đỏ 1 mặt

c. có 3 HLP nhỏ không đc sơn mặt nào 

tích mình nhé :D thanks

19 tháng 2 2017

tự làm chị đéo biếtleuleu !!!

Câu 1: 

\(AB=\sqrt{\left[3-\left(-2\right)\right]^2+\left(3-2\right)^2}=\sqrt{26}\)

\(BC=\sqrt{\left(2-3\right)^2+\left(-2-3\right)^2}=\sqrt{26}\)

\(AC=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-2-2\right)^2}=4\sqrt{2}\)

\(P=\dfrac{AB+BC+AC}{2}=\dfrac{2\sqrt{26}+4\sqrt{2}}{2}=\sqrt{26}+2\sqrt{2}\)

\(S=\sqrt{\left(\sqrt{26}+2\sqrt{2}\right)\cdot2\sqrt{2}\cdot2\sqrt{2}\cdot\left(\sqrt{26}-2\sqrt{2}\right)}=\sqrt{18\cdot8}=12\left(đvdt\right)\)

 

27 tháng 4 2016

Ta có Pt d2 :x+2y-5=0

vì M ϵ d1 :x-y-1=0 nên M(m,m-1)

MA2 = (-1-m)2 + (2-m+1)2 = 1+2m+m2 +9-6m+m2 =2m-4m+10

<=> MA=\(\sqrt{2m^2-4m+10}\)

d(m,d)= \(\frac{\left|m+2m-2-5\right|}{\sqrt{1^2+2^2}}\)  =\(\frac{\left|3m-7\right|}{\sqrt{5}}\)

theo bài ra thì MA=d(M,d2)

=>\(\frac{\left|3m-7\right|}{\sqrt{5}}\)=\(\sqrt{2m^2-4m+10}\)      <=>|3m-7|=\(\sqrt{5}\)\(\sqrt{2m^2-4m+10}\)

<=>9m2 -42m +49=5(2m2-4m+10)

<=>9m-42m +49=10m2 -20m +50

<=>m2 +22m +1=0

<=>m= -11+2\(\sqrt{30}\) hoặc m=-11-2\(\sqrt{30}\)

=> M(-11+2\(\sqrt{30}\) ,-12+2\(\sqrt{30}\) ) hoặc M(-11-2\(\sqrt{30}\) ,-12-2\(\sqrt{30}\) )

 

Câu 1:Em hãy điền đúng hoặc sai vào chỗ trống Em làm gì để có cây cảnh , hoa trang trí ở nhà 1.tiết kiệm để mua hoa2.hái hoa nơi công cộng3.trồng và chăm sóc cây cảnh, hoa4.bẻ,chặt cây mọc tự nhiênCâu 2:tìm từ điền vào chỗ trống1.nhà ở là tổ ấm gia đình,nơi thỏa mãn các nhu cầu về….và….2.nhà ở sạch sẽ găn nắp sẽ đảm bảo…. cho các thành viên gia đình ….thời gian dọn...
Đọc tiếp

Câu 1:Em hãy điền đúng hoặc sai vào chỗ trống

Em làm gì để có cây cảnh , hoa trang trí ở nhà

1.tiết kiệm để mua hoa

2.hái hoa nơi công cộng

3.trồng và chăm sóc cây cảnh, hoa

4.bẻ,chặt cây mọc tự nhiên

Câu 2:tìm từ điền vào chỗ trống

1.nhà ở là tổ ấm gia đình,nơi thỏa mãn các nhu cầu về….và….

2.nhà ở sạch sẽ găn nắp sẽ đảm bảo…. cho các thành viên gia đình ….thời gian dọn dẹp,tìm một vận dụng cần thiết và tăng vẻ đẹp cho nhà ở.

3.ngoài công dụng để ….và …gương còn tạo cảm giác làm cho căn phòng rộng và sáng hơn.Rèm cửa tạo vẻ râm mát có tác dụng che khuất  rộng …cho căn nhà

Câu 3:khoanh tròn vào những chữ cái trước cho trả lời đúng

1.công dụng của gương

A.dùng để soi và trang trí
B.dùng để neo

C.dùng để cho bớt nắng,gió

D.dùng để tạo vẻ đẹp

2.vật liệu để cắm hoa là

A.mút xốp,kéo

B.bàn chông.hoa

C.hoa,cành,lá

D.hoa,bình

II.Phần tự luận

1.hãy kể tên các chất dinh dưỡng cần thiết cho cơ thể con người.Nêu vai trò các chất béo.Hãy kể tên các sinh tố tan trong nước và các chất tố tan trong chất béo,sinh tố nào ít bền vững nhất?

2.

A.thế nào là nhiễm trùng,nhiễm độc thực phẩm

B.nêu các biện pháp phòng tránh nhiễm trùng thực phẩm tại nhà

3.nêu ý nghĩa của cây cảnh và hoa trong trang trí nhà ở. Em hãy giải thích tại sao cây xanh làm cho trong sạch không khí.

4.trình bày những nguyên tắc cơ bản về việc cắm hoa?Khi thực hành cắm hoa em càn chuẩn bị những dụng cụ, vật liệu gì?

đây là công nghệ nhé vì ko tìm thấy nên để toán (giúp mình với mình hoc vnen) kiểm tra rùi

1
29 tháng 4 2016

caj nì là CN mà

22 tháng 5 2020

bài khó quá nhỉ

KIỂM TRA HỌC KÌ II – Năm học: 2014 – 2015MÔN: TOÁN LỚP 6(Thời gian làm bài 90')Đề kiểm tra học kì 2 môn Toán lớp 6 Bài 4: (1,5 điểm) Một lớp có 40 học sinh gồm ba loại: giỏi, khá và trung bình. Số học sinh giỏi chiếm 1/5 số học sinh cả lớp. Số học sinh trung bình bằng 3/8 số học sinh còn lại.a) Tính số học sinh mỗi loại của lớp.b) Tính tỉ số phần trăm của số học sinh trung bình so...
Đọc tiếp

KIỂM TRA HỌC KÌ II – Năm học: 2014 – 2015

MÔN: TOÁN LỚP 6

(Thời gian làm bài 90')

Đề kiểm tra học kì 2 môn Toán lớp 6 

Bài 4: (1,5 điểm) Một lớp có 40 học sinh gồm ba loại: giỏi, khá và trung bình. Số học sinh giỏi chiếm 1/5 số học sinh cả lớp. Số học sinh trung bình bằng 3/8 số học sinh còn lại.

a) Tính số học sinh mỗi loại của lớp.

b) Tính tỉ số phần trăm của số học sinh trung bình so với số học sinh cả lớp.

Bài 5: (2 điểm) Cho góc bẹt xOy. Vẽ tia Oz sao cho góc yOz = 80o.

a) Tính góc xOz?

b) Vẽ Om, On lần lượt là tia phân giác của góc xOz và góc yOz. Hỏi hai góc và có phụ nhau không? Tại sao?

 


Bài 4: Để cứu trợ đồng bào bị lũ lụt, 1 tổ chức từ thiện đề ra mục tiêu là quyên góp được 8400kg gạo. Trong 3 tuần đầu, họ đã quyên được 1/2 số gạo. Sau đó quyên được 2/3 số gạo đó. Cuối cùng quyên được 1/4 số gạo đó. Hỏi họ có vượt mức đề ra không? Vượt bao nhiêu kg?

Bài 5: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ hai tia Oy và Ot sao cho góc xOy = 400; góc xOt = 800

a) Tính góc yOt. Tia Oy có phải là tia phân giác của góc xOt không?

b) Gọi Om là tia đối của tia Ox. Tính góc mOt

c) Gọi tia Ob là tia phân giác của góc mOt. Tính góc bOy.

 

 

Bài 3: (1,5đ) Lớp 6A có 40 học sinh. Cuối năm, số học sinh xếp loại khá chiếm 45% tổng số học sinh cả lớp. Số học sinh khá bằng 5/6 học sinh trung bình, còn lại là học sinh giỏi. Tính số học sinh mỗi loại.

Bài 4: (3,5đ) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ tia Ot, Oy sao cho :góc xOt = 500; góc xOy= 1000

a) Tia Ot có nằm giữa hai tia Ox và Oy không?

b) So sánh góc tOy và góc xOt

c) Tia Ot có là tia phân giác của góc xOy không? Vì sao?

GIÚP MÌNH VỚI CÁC BẠN ƠI, MÌNH TICK CHO NHÉ 

1
12 tháng 4 2016

I'm scare

 

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )Câu 1:(5đ)1. Cho \(a,b,c\) là số thực thỏa mãn:\(ab+bc+ca=2015\). Tính giá trị biểu thức:\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)2. Cho \(a,b,c\) là các số nguyên thỏa mãn:\(a^3+b^3=5c^3\)CMR: \(a+b+c\) chia hết cho \(6\)3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa...
Đọc tiếp

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )

Câu 1:()

1. Cho \(a,b,c\) là số thực thỏa mãn:

\(ab+bc+ca=2015\). Tính giá trị biểu thức:

\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)

2. Cho \(a,b,c\) là các số nguyên thỏa mãn:

\(a^3+b^3=5c^3\)

CMR: \(a+b+c\) chia hết cho \(6\)

3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa mãn:

\(x^2\left(y^2+1\right)+y^2+24=12xy\)

Câu 2:()

a) \(3x+\sqrt{5-x}=2\sqrt{x-3}+11\)

b) \(2x^2+4x-8=\left(2x+3\right)\sqrt{x^2-3}\)

Câu 3:()

Cho các số thực \(x,y\) thỏa mãn điều kiện:

\(x-\sqrt{x+1}=\sqrt{y+5}-y\)

Tìm GTLN của \(P=x+y\)

Câu 4:()

Qua \(M\) cố định ở ngoài đường tròn \(\left(O;R\right)\). Qua \(M\) kẻ các tiếp tuyến \(MA,MB\) ( \(A,B\) là các tiếp tuyến ). Qua \(P\) di động trên cung nhỏ \(AB\) ( \(P\) khác \(A;B\) ) dựng tiếp tuyến của \(\left(O\right)\) cắt \(MA,MB\) lần lượt tại \(E\) và \(F\).

a) CMR: Chu vi tam giác \(MEF\) không đổi khi \(P\) di động trên \(AB\).

b) Lấy \(N\) trên tiếp tuyến \(MA\) sao cho \(N,F\) khác phía \(AB\) và \(AN=BF\)CMR\(AB\) đi qua trung điểm của \(NF\).

c) Kẻ đường thẳng \(d\) qua \(M\) của \(\left(O\right)\) tại \(H\) và \(K\). Xác định vị trí của \(d\) để \(MH+HK\) đạt GTNN

Câu 5:()

1. Cho \(p\)là số nguyên tố thỏa mãn \(p^2+2018\) là số nguyên tố. CMR: \(6p^2+2015\) là số nguyên tố.

2. Cho tập \(x=\left\{1;2;3...;2015\right\}\). Tô màu các phần tử \(x\)bởi \(5\) màu: xanh, đỏ, vàng, tím, nâu. CMR tồn tại \(3\) phần tử \(a,b,c\) của \(x\)sao cho \(a\) là bội của \(b\)\(b\)là bội của \(c\)

 

 

5
29 tháng 11 2015

Lớp 9 hả bạn

Thanh nhiều nha

29 tháng 11 2015

Bạn còn đề nào không? Cho mình với