K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

26 tháng 8 2018

Đáp án B.

Mặt cầu S : x 2 + y 2 + z 2 = 3

có tâm O 0 ; 0 ; 0  và bán kính  R = 3

Giả sử A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c  với a , b , c > 0   ⇒ Phương trình mặt phẳng α  là: x a + y b + z c − 1 = 0

Để ý rằng O A 2 + O B 2 + O C 2 = 27 ⇔ a 2 + b 2 + c 2 = 27  và vì α  tiếp xúc mặt cầu S :

⇒ d O , α = R = 3 ⇔ 0 a + 0 b + 0 c − 1 1 a 2 + 1 b 2 + 1 c 2 = 3 ⇔ 1 a 2 + 1 b 2 + 1 c 2 = 1 3

Ta luôn có bất đẳng thức a 2 + b 2 + c 2 + 1 a 2 + 1 b 2 + 1 c 2 ≥ 9  với  a , b , c > 0.

Dấu bằng khi  a = b = c = 3

Ta có V O . A B C = O A . O B . O C 6 = a b c 6 = 27 6

hoặc  V O . A B C = d O , α . S A B C 3 ⇔ S A B C = 9 3 2 .

7 tháng 2 2018

4 tháng 8 2018

Đáp án A

Phương pháp giải:  Xác định tọa độ ba điểm A, B, C và gọi tâm I, sử dụng điều kiện cách đều IA = IB = IC = IO để tìm tọa độ tâm I của mặt cầu

Lời giải:

Gọi A(a;0;0); B(0;b;0); C(0;0;c) => Tọa độ trọng tâm G là

Gọi tâm mặt cầu (S) là 

Vậy tọa độ tâm mặt cầu là I(3;6;12)

2 tháng 10 2019

Đáp án C

19 tháng 11 2019

Chọn C.

27 tháng 12 2017

15 tháng 7 2019

Đáp án C.

Phương pháp: 

- Viết phương trình mặt phẳng α .  

- Tìm tọa độ giao điểm B, C của  α với trục Oy, Oz.

- Tính thể tích khối tứ diện vuông OABC: V = 1 6 . O A . O B . O C .  

Cách giải:

Giả sử n → a ; b ; c ,   a 2 + b 2 + c 2 ≠ 0  là một vecto pháp tuyến của (P).

Vì α đi qua A 2 ; 0 ; 0 nên PTTQ của (P):

a x − 2 + b y − 0 + c z − 0 = 0  

⇔ a x + b y + c z − 2 a = 0.  

Vì α  vuông góc với α nên n → a ; b ; c  vuông góc với n 1 → 0 ; 2 ; − 1 .  

Khi đó,

0. a + 2. b + − 1 . c = 0 ⇔ c = 2 b  

⇒ α : a x + b y + 2 b z − 2 a = 0  

d O ; α = 4 3 ⇔ − 2 a a 2 + b 2 + 4 b 2 = 4 3 ⇔ 6 a 2 = 16 a 2 + 5 b 2 ⇔ a 2 = 4 b 2 ⇔ a = 2 b a = − 2 b  

Cho

b = 1 ⇒ a = 2 a = − 2 ⇒ n → 2 ; 1 ; 2 n → − 2 ; 1 ; 2 ⇒ α : 2 x + y + 2 z − 4 = 0 α : − 2 x + y + 2 z + 4 = 0  

+ )   α : 2 x + y + 2 z − 4 = 0 ⇒ B 0 ; 4 ; 0 ,   C 0 ; 0 ; 2 ⇒ V O A B C = 1 6 . 2 . 4 . 2 = 8 3  

+ )   α : − 2 x + y + 2 z + 4 = 0 ⇒ B 0 ; − 4 ; 0 ,   C 0 ; 0 ; − 2 ⇒ V O A B C = 1 6 . 2 . − 4 . − 2 = 8 3  

Vậy thể tích khối tứ diện OABC là 8 3 .  

9 tháng 1 2018

Đáp án B