K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Đáp án C

Mặt cầu  (S) có tâm I 1 ; 0 ; 2 , bán kính R=3. Nhận xét thấy S, I, S’ thẳng hàng và S S ' ⊥ A B C D . Khi đó S S ' = 2 R = 6 . Ta có:

V H = V S . A B C D + V S ' . A B C D = 1 3 d S ; A B C D . S A B C D + 1 3 d S ' ; A B C D . S A B C D

= 1 3 d S ; A B C D + d S ' ; A B C D . S A B C D = 1 3 S S ' . S A B C D = 2 S A B C D

Từ giả thiết suy ra ABCD là hình vuông, gọi a là cạnh hình vuông đó.

Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng r và ngoại tiếp hình vuông ABCD.

Suy ra 2 r = A C = a 2 ⇒ r = a 2 2 . Từ d I ; P 2 + r 2 = R 2 .

⇔ r = R 2 − d I ; P 2 = 3 2 − 8 3 2 = 17 3 = a 2 2 ⇔ a = 2 17 3 2

Vậy V H = 2 S A B C D = 2 a 2 = 2. 2 17 3 2 2 = 68 9 .

10 tháng 1 2018

11 tháng 10 2019

11 tháng 3 2019

Đáp án A

24 tháng 6 2018

Chọn A

Phương pháp:

Cách giải:

Mà AH vuông góc (BCD) nên AH là trục của mặt phẳng (BCD).

Gọi K là trung điểm AD, kẻ OK vuông góc với AD, O thuộc AH

16 tháng 11 2018

Đáp án C

1 tháng 4 2017

Chọn đáp án D

Mặt cầu (S) có tâm I(1;2;2) bán kính R = 3 

13 tháng 7 2019

Chọn A

Coi như a =1. Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B ⇒ Δ A B D  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ ( B C D )  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ ( A H E ) ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có

A E = 1 2   C D = 2 2 , H K = 1 2   B C = 1 2 ⇒ A H = 1 2  

Vậy A I = A E 2 A H = 1 ⇒ R = 1 ⇒ V m c = 4 3 π

5 tháng 5 2018

Chọn D.

Phương pháp: Xác định cạnh của đáy trước.

Cách giải: Bán kính mặt cầu ngoại tiếp khối chóp là 

Gọi O là tâm của đáy, I là tâm mặt cầu, G là tâm tam giác SAD, M là trung điểm AD.

Dễ thấy I nằm đồn thời trên trục của tam giác SAD và trục của đáy.

Qua D dựng đường thẳng d song song với AC. Gọi K là hình chiếu cửa M trên d, H là hình chiếu của M trên SD. Suy ra M H ⊥ d , S D .

Ta có: 

1 tháng 11 2019

Chọn C.