Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
bài 1
\(A+B=a+b-5-b-c+1=a-c-4\)
\(A+B+C+D=a-c-4+b-c-4+b-a=2b-2c\)
\(A-B+C-D=a+b-5+b+c-1+b-c-4+a-b\)
\(A-B+C-D=2a+2b-10\)
\(A+B=a-c-4\)
\(C-D=b-c-4-b+a=a-c-4\)
\(A+B=C-D\)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
A B C C'
nếu đánh BC kéo dài thêm 5 cm về phía C thì diện tích hình chữ tam giác là 1/2xAHxBC' = 25 có BC' là 15+5 cm rồi tính được AH cuối cùng diện tích tam giác là AHxBC đã cho. Đó là với tường hợp là kéo dài theo đáy BC tuy nhiên đề cũng không rõ ràng lắm!
25cm2 A B C
nhìn lên hình vẽ ta thấy :phần s tăng thêm là 1 hình tam giác có s 20cm2 đáy là 5cm.chiều cao cũng chính =chiều cao của tan giác ABC vậy chiều cao là:25x2:5=10cm
diện tích ABC là:10x15:2=75
a) (P) có vec tơ pháp tuyến là \(\overrightarrow{n_1}\left(1;1;1\right)\)
\(\overrightarrow{AB}\left(1;-1;-1\right)\)
Vì (Q) vuông góc với mp (P) và chứa A; B nên véc tơ pháp tuyến của (Q) là \(\overrightarrow{n_2}\) vuông góc với cả \(\overrightarrow{n_1}\left(1;1;1\right)\) và \(\overrightarrow{AB}\left(1;-1;-1\right)\)
=> \(\overrightarrow{n_2}\) = \(\left[\overrightarrow{n_1};\overrightarrow{AB}\right]\) = (0; 2; -2)
mp(Q) đi qua A (-1;2;2) và có vec tơ pt là \(\overrightarrow{n_2}\) có phương trình là: 0.(x +1) + 2(y - 2) -2.(z - 2) = 0 <=> 2y - 2z = 0 <=> y - z = 0
b) đường thẳng AB có vec tơ chỉ phương là \(\overrightarrow{AB}\left(1;-1;-1\right)\) và đi qua B(0;1;1) có phương trình tham số là:
\(\begin{cases}x=t\\y=1-t\\z=1-t\end{cases}\left(t\in R\right)\)
H = AB giao với (P)
H thuộc AB => H (a; 1-a; 1 - a)
H thuộc mp(P) => a + 1- a+ 1 - a = 0 => 2 - a = 0 => a = 2
Vậy H (2; -1; -1)
Phương pháp:
- Gọi D là hình chiếu của A lên BC.
Gọi N, D, M lần lượt là hình chiếu của F, A, E lên BC. H là trực tâm tam giác.