K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{9}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)

1) \(x_1x_2^2+x_2x_1^2=x_1x_2\left(x_1+x_2\right)\) (1)

thay vào ta có : (1) \(\Leftrightarrow\) \(\dfrac{9}{2}.\dfrac{1}{2}=\dfrac{9}{4}\) vậy \(x_1x_2^2+x_2x_1^2=\dfrac{9}{4}\)

2) \(\dfrac{1}{x_1^3}+\dfrac{1}{x_2^2}\) = \(\dfrac{x_1^3+x^3_2}{\left(x_1x_2\right)^3}\) = \(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}\) (2)

thay vào ta có : (2) \(\Leftrightarrow\) \(\dfrac{\left(\dfrac{9}{2}\right)^3-3\left(\dfrac{1}{2}\right)\left(\dfrac{9}{2}\right)}{\left(\dfrac{1}{2}\right)^3}\)

= \(675\)

28 tháng 6 2017

cho c nghìn like

6 tháng 6 2018
https://i.imgur.com/Uhbfb24.jpg
6 tháng 6 2018

mơn

8 tháng 5 2019

???

7 tháng 5 2019

Thanh Tam

11 tháng 4 2018

Dedung không bạn

12 tháng 4 2018

Đề đúng rồi bạn

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.