K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2+4x+4-x^2+9=-3

=>4x+13=-3

=>4x=-16

=>x=-4

2 tháng 9 2023

\(\left(x+2\right)^2-\left(x-3\right)\left(x+3\right)=-3\\ \Leftrightarrow x^2+4x+4-x^2-9=-3\\ \Leftrightarrow x^2-x^2+4x=-3-4+9\\ \Leftrightarrow4x=-16\\ \Leftrightarrow x=-4\)

Vậy \(S=\left\{-4\right\}\)

a: \(\Leftrightarrow x\left(16-x^2\right)+x^3-125=3\)

=>16x-125=3

=>16x=128

hay x=8

b: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)

\(\Leftrightarrow6x^2+2-6x^2+12x-6=-10\)

=>12x-4=-10

=>12x=-6

hay x=-1/2

c: \(\Leftrightarrow x^3-27+x\left(4-x^2\right)=1\)

\(\Leftrightarrow4x-27=1\)

hay x=7

2 tháng 9 2017

<=> x2 - 2.x.2 + 22 - (x2+ 3x - 3x - 9) = 5

<=> x2 - 4x + 4 - x2 - 3x + 3x + 9 = 5

<=> x2 - 4x + 4 - x2 -3x + 3x + 9 - 5 = 0

<=> -x2 - 4x + 8 = 0

Rồi bạn vận dụng kiến thức tìm Denta nhé

29 tháng 4 2017

a ) \(\dfrac{x-y}{x^3+y^3}.Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\)

\(\Leftrightarrow Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}:\dfrac{x-y}{x^3+y^3}\)

\(\Leftrightarrow Q=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\cdot\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x-y}\)

\(\Rightarrow Q=\left(x-y\right)\left(x+y\right)=x^2-y^2\)

Vậy \(Q=x^2-y^2\)

b ) \(\dfrac{x+y}{x^3-y^3}.Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}\)

\(\Leftrightarrow Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}:\dfrac{x+y}{x^3-y^3}\)

\(\Leftrightarrow Q=\dfrac{3x\left(x+y\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x+y}\)

\(\Leftrightarrow Q=3x\left(x-y\right)=3x^2-3xy\)

Vậy \(Q=3x^2-3xy\)

29 tháng 6 2017

Phép chia các phân thức đại số

26 tháng 8 2017

Đặt √x = t, x ≥ 0 => t ≥ 0.

Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)

Nếu t = 0, t = 1, f(t) = 1 >0

Với 0 < t <1,      f(t) = t8 + (t2 - t5)+1 - t 

       t8 > 0, 1 - t > 0, t2 - t= t3(1 – t) > 0. Suy ra f(t) > 0.

Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0

Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

chọn ý B nha 

30 tháng 11 2019

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=3\end{cases}}\)

Chọn ( B )

19 tháng 10 2018

\(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(x^3-6x^2+12x-8-x^3+6x^2=4\)

\(12x-8=4\)

\(12x=4+8\)

\(12x=12\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

\(\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)

\(x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0\)

\(7x^2=0\)

\(\Rightarrow x=0\)

Vậy \(x=0\)

Tham khảo nhé~