Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
Bài 1 : Giải :
Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3
a chia cho 4 dư 2 => a + 2 \(⋮\)4
a chia cho 5 dư 3 => a + 2 \(⋮\)5
a chia cho 6 dư 4 => a + 2 \(⋮\)6
=> a + 2 \(\in\) BC( 3,4,5,6 )
3 = 3
4 = 22
5 = 5
6 = 2 .3
BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60
BC( 3,4,5,6 ) = { 0;60;120;180;... }
Mà : a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = 60
=> a = 60 - 2 = 58
Vậy số tự nhiên cần tìm là 58
Bài 2 : Giải :
\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)
\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
Vậy : A = 2
Bài 3: Giải :
Quy đồng tử số , ta có :
\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)
=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .
Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .
Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .
Tổng số phần bằng nhau là :
21 + 22 + 27 = 70
Số thứ nhất là :
210 : 70 . 21 = 63
Số thứ hai là :
210 : 70 . 22 = 66
Số thứ ba là :
210 - 63 - 66 = 81
Đáp số : ...
Theo bài ra , ta có :
a:4 dư 2
a:6 dư 4
a:8 dư 6
=> ( a+2 ) \(⋮\) 4;6;8
Ta có : 4=\(2^2\);6=2.3;8=\(2^3\)
=> BCNN(4;6;8)=\(2^3\).3=24
=> BC(4,6,8)= B(24)={0;24;48;72;...}
=> ( a+2 ) \(\in\) {0;24;48;72;...}
=> a \(\in\) {-2 ;22;46;70;...}
Mà a là số tự nhiên
=> a \(\in\) { 22;46;70;..}
Mà a là nhỏ nhất và a chia cho 4;6;8 có số dư lần lượt là 2;4;6 nên a=22
Vậy a=22
Gọi số cần tìm là : A
Chia cho 29 dư 5 nghĩa là : A = 29p + 5 ( p \(\in\) N )
Tương tự : A = 31q + 28 ( q \(\in\) N )
Nên 29p + 5 = 31q + 28 => 29( p - q )= 2q + 23
Ta thấy 2q + 23 là số lẻ => 29( p - q ) cũng là số lẻ => p - q = 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất ( A = 31q + 28 )
=> 2q = 29( p - q ) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Vậy số cần tìm là : A = 31q + 28 = 31 . 3 + 28 = 121
Bài 3:
Ta có: \(10^{1995}+8=...0+8=...8\)
\(10^{1995}+8=1+0...0+8=9\)(1995 c/s 0)
\(\Rightarrow10^{1995}+8⋮9\)
Vậy \(\frac{10^{1995}+8}{9}\)là số tự nhiên
3. \(\frac{10^{1995}+8}{9}=\frac{100...00+8}{9}\) (số 100...00 có 1995 chữ số 0)
\(=\frac{100...08}{9}\)(số 100...08 có 1994 chữ số 0)
Mà số 100...08 có 1 + 0 + 0 + ... + 0 + 8 = 9\(⋮\)9
\(\Rightarrow100...08⋮9\)
\(\Rightarrow\frac{100...08}{9}⋮9\)
\(\Rightarrow\frac{100...08}{9}\)có kết quả là 1 số tự nhiên.
Vậy\(\frac{10^{1995}+8}{9}\)là 1 số tự nhiên.
Gọi số cần tìm là a thì 3a – 7 ∈ BC(8;11) và và a là số nhỏ nhất thỏa mãn 100≤a≤999 suy ra 293≤ 3a – 7 ≤2990
BCNN(8;11) = 88
3a – 7 ∈ {0;88;176;264;352;440;..}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên 3a – 7 = 440
a = 149