K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Chọn C.

Hàm số có tập xác định là 

Ta có 

=> y = -2  là đường tiệm cận ngang của đồ thị hàm số đã cho.

Mặt khác, 

Với mọi x > 0 ta có 

=> x = 0 là đường tiệm cận đứng của đồ thị hàm số đã cho.

Vậy hàm số đã cho có 2 đường tiệm cận.

31 tháng 3 2017

Hỏi đáp Toán

NV
8 tháng 8 2020

1.

\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang

2.

\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng

3.

\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang

4.

\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng

ĐTHS có 2 tiệm cận

8 tháng 8 2020

2mx nha bạn

NV
8 tháng 8 2020

1.

Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)

Khi đó:

\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng

Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)

Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)

2.

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ

\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận

Vậy ĐTHS có 2 tiệm cận

3.

Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{5;-5\right\}\)

Đề bài sai hoặc đáp án sai

19 tháng 4 2016

Xét \(M\left(m;1+\frac{5}{m-3}\right)\) thuộc đồ thị đã cho 

Theo yêu cầu bài tài <=> \(\left|m-3\right|=\left|\frac{5}{m-3}\right|\Leftrightarrow m=3\pm\sqrt{5}\)

Vậy \(M\left(3\pm\sqrt{5};1\pm\sqrt{5}\right)\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

29 tháng 4 2016

Vì tam giác IAB cân tại I nên tiếp tuyến phải song song với một trong 2 đường thẳng có phương trình \(y=x;y=-x\).

 Ta có \(y'=\frac{1}{\left(x+2\right)^2}>0;x\ne-2\)

Mọi \(M\left(x_0;y_0\right)\) là tiếp điểm thì \(y'\left(x_0\right)=1\Leftrightarrow1=\frac{1}{\left(x_0+2\right)^2}\Leftrightarrow\left[\begin{array}{nghiempt}x_0=-1\\x_0=-3\end{array}\right.\)

Từ đó suy ra 2 tiếp tuyến là \(y=x+1;y=x+5\)

NV
29 tháng 9 2020

ĐKXĐ: \(0< x\le2\)

Miền xác định của hàm không chứa vô cùng nên hàm ko có tiệm cận ngang

\(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=-\infty\) nên \(x=0\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=\infty\) nên \(x=1\) là tiệm cận đứng

23 tháng 5 2017

b) Tiệm cận đứng là đường thẳng \(x=3\)

Tiệm cận ngang là đường thẳng \(y=1\)

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

a) Vì ( hoặc ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.

nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.

b) Hai tiệm cận đứng : ; tiệm cận ngang : .

c) Tiệm cận đứng : x = -1 ;

nên đồ thị hàm số không có tiệm cận ngang.

d) Hàm số xác định khi :

( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Câu 1:

Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)

Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)

\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)

Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)

\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)

Do đó không tồn tại m thỏa mãn.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Câu 2:

Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:

TH1: PT \(x^2-3x-m=0\) có nghiệm kép

\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)

\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)

TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)

\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)

Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)

Vậy tổng giá trị của $m$ thỏa mãn là:

\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)