K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

Hỏi đáp Toán

4 tháng 2 2016

với a<b<c<d nha

 

14 tháng 3 2017

ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)

vậy Min A= c+d-a-b

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )Câu 1:(5đ)1. Cho \(a,b,c\) là số thực thỏa mãn:\(ab+bc+ca=2015\). Tính giá trị biểu thức:\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)2. Cho \(a,b,c\) là các số nguyên thỏa mãn:\(a^3+b^3=5c^3\)CMR: \(a+b+c\) chia hết cho \(6\)3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa...
Đọc tiếp

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )

Câu 1:()

1. Cho \(a,b,c\) là số thực thỏa mãn:

\(ab+bc+ca=2015\). Tính giá trị biểu thức:

\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)

2. Cho \(a,b,c\) là các số nguyên thỏa mãn:

\(a^3+b^3=5c^3\)

CMR: \(a+b+c\) chia hết cho \(6\)

3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa mãn:

\(x^2\left(y^2+1\right)+y^2+24=12xy\)

Câu 2:()

a) \(3x+\sqrt{5-x}=2\sqrt{x-3}+11\)

b) \(2x^2+4x-8=\left(2x+3\right)\sqrt{x^2-3}\)

Câu 3:()

Cho các số thực \(x,y\) thỏa mãn điều kiện:

\(x-\sqrt{x+1}=\sqrt{y+5}-y\)

Tìm GTLN của \(P=x+y\)

Câu 4:()

Qua \(M\) cố định ở ngoài đường tròn \(\left(O;R\right)\). Qua \(M\) kẻ các tiếp tuyến \(MA,MB\) ( \(A,B\) là các tiếp tuyến ). Qua \(P\) di động trên cung nhỏ \(AB\) ( \(P\) khác \(A;B\) ) dựng tiếp tuyến của \(\left(O\right)\) cắt \(MA,MB\) lần lượt tại \(E\) và \(F\).

a) CMR: Chu vi tam giác \(MEF\) không đổi khi \(P\) di động trên \(AB\).

b) Lấy \(N\) trên tiếp tuyến \(MA\) sao cho \(N,F\) khác phía \(AB\) và \(AN=BF\)CMR\(AB\) đi qua trung điểm của \(NF\).

c) Kẻ đường thẳng \(d\) qua \(M\) của \(\left(O\right)\) tại \(H\) và \(K\). Xác định vị trí của \(d\) để \(MH+HK\) đạt GTNN

Câu 5:()

1. Cho \(p\)là số nguyên tố thỏa mãn \(p^2+2018\) là số nguyên tố. CMR: \(6p^2+2015\) là số nguyên tố.

2. Cho tập \(x=\left\{1;2;3...;2015\right\}\). Tô màu các phần tử \(x\)bởi \(5\) màu: xanh, đỏ, vàng, tím, nâu. CMR tồn tại \(3\) phần tử \(a,b,c\) của \(x\)sao cho \(a\) là bội của \(b\)\(b\)là bội của \(c\)

 

 

5
29 tháng 11 2015

Lớp 9 hả bạn

Thanh nhiều nha

29 tháng 11 2015

Bạn còn đề nào không? Cho mình với

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

25 tháng 2 2016

Ta có :

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\) chia hết cho 10

25 tháng 2 2016

Bạn nhấn tổ hợp phím Ctrl + - để thu nhỏ màn hình mới xem được đầy đủ lời giải nhá !

29 tháng 6 2019

\(\left(1-2x\right)^3=\left(-2\right)^3\)

\(1-2x=-2\)

\(-2x=-2-1\)

\(-2x=-3\)

\(x=\frac{-3}{-2}=\frac{3}{2}\)

29 tháng 6 2019

\(\left(1-2x\right)^3=-8\) 

\(\left(1-2x\right)^3=\left(-2\right)^3\) 

\(\Rightarrow1-2x=-2\) 

        \(2x=3\) 

         \(x=\frac{3}{2}\)

4 tháng 2 2016

Hỏi đáp Toán

https://i.imgur.com/3Wy6g2D.jpg
27 tháng 1 2016

Ta có : 

3abc = abc x 5

3000 + abc = abc x 5

3000 = abc x 4

abc = 3000 : 4

abc = 750

27 tháng 1 2016

                                            Bài làm

3abc = abc x5

3000 + abc = abc x 5

3000 = abc x4 

abc = 3000 : 4

abc = 750

Vậy 3abc là 3750