K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2023

Xét khai triển \(\left(x+2\right)^5\left(3x+4\right)^5=\sum\limits^5_{k=0}C^k_5x^k.2^{5-k}.\sum\limits^5_{l=0}C^l_5.3^lx^l.4^{5-l}\)

\(=\sum\limits^5_{k=0}\sum\limits^5_{l=0}C^k_5.C^l_5.2^{5-k}.3^l.4^{5-l}.x^{k+l}\)

Xét \(k+l=9\), ta có các bộ \(\left(k,l\right)\) sau thỏa mãn: \(\left(k,l\right)\in\left\{\left(4;5\right);\left(5;4\right)\right\}\) (do \(k,l\le5\))

\(\Rightarrow\) Hệ số của số hạng chứa \(x^9\) trong khai triển đã cho là \(C^4_5.C^5_5.2^{5-4}.3^5.4^{5-5}+C^5_5.C^4_5.2^{5-5}.3^4.4^{5-4}\) \(=4050\)

14 tháng 5 2023

*xét khai triển (x+2)^5

= > T k+1=kC4. x^4-k

Số hạng chứa x^9=>x^5-k=x^9

<=> 5-k=9=>k=-4

-->số hạng chứa x^9 là: -4C5.x^9.2^5=

 --->kết quả bạn tự tính nhé

* Cách tính như sau : thứ nhất bấm 5 rồi nhấn ship chia(:) -4 rồi nhân cho 2^5 sẽ ra kết quả 

Xét khai triển (3x+4)^5

--> File: undefined 

     Chú ý phần trả lời cái câu (3x+4)^5 là Chữ viết bằng bút màu xanh nhé

Nếu chưa hiểu rõ thì id mình sẽ hướng dẫn kĩ hơn nhé

    

29 tháng 9 2020

Ta có: \(\left(1-x^2+x^4\right)^{16}=M.C^k_{16}.\left(x^4-x^2\right)^k=M.C^k_{16}.N.C^i_k.\left(x^4\right)^i.\left(-x^2\right)^{k-i}\)

\(=M.N.C^k_{16}.C^i_k.\left(-1\right)^{k-i}.x^{2i+2k}\)

Hệ số của x^16 => 2i + 2k = 16 => i + k = 8 và \(i\le k\)=> Tìm i và k

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

25 tháng 3 2020
https://i.imgur.com/NOxfqjV.jpg
25 tháng 3 2020
https://i.imgur.com/awOKwJi.jpg
NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

NV
26 tháng 10 2019

a/ \(x\ge-3\)

\(\Leftrightarrow\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)

b/ \(x\ge-\frac{5}{2}\)

\(\Leftrightarrow\left(4x+7\right)^2=\left(2x+5\right)^2\)

\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

c/ \(x\ge1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=5x-5\\2x^2-3x-5=5-5x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-8x=0\\2x^2+2x-10=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\\x=\frac{-1+\sqrt{21}}{2}\\x=\frac{-1-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)

NV
26 tháng 10 2019

d/ \(x\ge\frac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\left(l\right)\\x=\sqrt{22}\\x=-\sqrt{22}\left(l\right)\end{matrix}\right.\)

e/ \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-x-2=x-2\\3x^2-x-2=2-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=0\\3x^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{2}{3}\left(l\right)\\x=\frac{2\sqrt{3}}{3}\\x=\frac{-2\sqrt{3}}{3}\end{matrix}\right.\)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1