Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
1) (x+3)(1-x) < 0
(=) x+3>0 và 1-x<0
hoặc x+3 <0 và 1-x<0
(=)x>-3 và x>1 =) x>1
hoặc x<-3 và x>1 ( vô lý )
vậy x >1 thì .......vt nốt còn lại
2) (x+6)/5 - (x-2)/3 >2
(=) [3(x+6)] / 15 - [5(x-2)] / 15 >(2*15)/15
(=) [3(x+^) - 5(x-2)] / 15 >30/15
(=) 3(x+6) - 5(x-2) >30
(=)3x +18 -5x +10 -30 >0
(=) -2x -2 > 0
(=) -2x > 2
(=) x < -1
vậy với x < -1 thì ..........vt nốt còn lại
k cho a nha =)))
1) x+3=0 <=> x=-3
1-x=0 <=> x=1
Theo đề bài : A = (x+3)(1-x) <= 0
Xét các TH
1. x<=-3 => A <= 0
2. -3<x<1 => A >= 0, loại
3. x>=1 => A <= 0
=> x<=-3 hoặc x>=1
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
\(H=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
Đặt \(t=x^3+3x\) ta có:
\(t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\). Dấu "=" xảy ra khi \(t=-1\Rightarrow x^2+3x=-1\Rightarrow x_{1,2}=\frac{-3\pm\sqrt{5}}{2}\)
a, Min=-3 khi x=0
b, Min=9/16 khi x=-1/2
c,Min=0 khi x=1
cái phần a với phần c nhìn cái là ra vì mũ chắn luôn dương
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2015\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2015\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2015\)
Đặt \(x^2+5x=t\) ta có pt trở thành:
\(\left(t-6\right)\left(t+6\right)+2015\)
\(=t^2-36+2015=t^2+1979\)
Vì: \(t^2\ge0\)
=> \(t^2+1979\ge1979\)
Vậy GTNN của bt trên là 1979 khi \(t=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-5\end{array}\right.\)
\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2015\)
\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2015\)
\(=\left(x^2+5x\right)^2-6^2+2015\)
\(=\left[x\left(x+5\right)\right]^2+1979\ge1979\)
\(\Rightarrow Min_A=1979\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-5\end{array}\right.\)