K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

a)=3x2(x+2)/x2(x+2)+(x+2)

=3x2(x+2)/(x+2)(x2+1)

Để phân thức được xác định thì (x+2)(x2+1) khác 0

X2+1 >0

 x+20

x2

b) theo câu a

ta có:

=3x2(x+2)/(x+2)(x2+1)

=3x2/x2+1=2

=3x2=(x2+1)2

=3x2=2x2+2

=x2=2

x=

1 tháng 5 2021
a) ĐKXĐ của A : x³+2x²+x+2khác 0 <=>x²(x+2)+(x+2) khác 0 <=>(x+2)(x²+1) khác 0 Vì x² +1 >= 0 với mối x ( tách theo hằng đẳng thức số 1) =>x+2 khác 0 =>x khác -2 b)phân tích như bình thg đc A=3x²/x²+1 A=2 <=>3x²/x²+1=2 =>3x²= 2x²+2 =>3x²-2x²=2 => X²= 2 => x = +-√2
19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

4 tháng 5 2017

a) A=3x+22(x1)3(2x+1)

Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) \(\ne0\)

=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.

Ta có phương trình:

2 (x - 1) - 3 (2x + 1) \(=0\)

hay 2x - 2 - 6x - 3 = -4x - 5 = 0

=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}\)

Vậy x \(\ne\dfrac{-5}{4}\) thì giá trị phân thức A
=3x+22(x1)3(2x+1)được xác định.

b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)

Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) \(\ne\) 0

=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.

Ta có phương trình:

1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0

hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0

=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}=-2,3\)

Vậy x \(\ne0\) thì giá trị phân thức B
=0,5(x+3)21,2(x+0,7)4(0,6x+0,9)được xác định.

4 tháng 5 2017

Sửa lại:

a) \(A=\dfrac{3x+2}{2\left(x-1\right)-3\left(2x+1\right)}\)

Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) ≠0

=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.

Ta có phương trình:

2 (x - 1) - 3 (2x + 1) =0

hay 2x - 2 - 6x - 3 = -4x - 5 = 0

=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}=-1,25\)

Vậy x ≠ \(-1,25\) thì giá trị phân thức A được xác định.

b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)

Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) ≠ 0

=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.

Ta có phương trình:

1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0

hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0

=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}\)=−2,3

Vậy x ≠ -2,3 thì giá trị phân thức B được xác định.

23 tháng 7 2017

a)  ĐK : \(x\ne1\)\(x\ne-1\)

b) Ta có biểu thức:

\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\left(\frac{4x^2-4}{5}\right)\)

\(=\left(\frac{x+1}{2.\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2.\left(x+1\right)}\right).\left(\frac{4.\left(x^2-1\right)}{5}\right)\)

\(=\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}\)

\(=\frac{x^2+2x+2+6-x^2-2x+3}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}=\frac{40.\left(x+1\right)\left(x-1\right)}{10.\left(x+1\right)\left(x-1\right)}=4\)

Vậy giá trị của biểu thức B không phụ thuộc vào biến x khi  \(x\ne1;x\ne-1\)

24 tháng 8 2020

b, P=x+2x+3−5x2+3x−2x−6+12−xP=x+2x+3−5x2+3x−2x−6+12−x

=x+2x+3−5(x+3)(x−2)−1x−2=x+2x+3−5(x+3)(x−2)−1x−2

=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)

=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)

=x2−4x+3x−12(x+3)(x−2)=x2−4x+3x−12(x+3)(x−2)

=(x−4)(x+3)(x+3)(x−2)=x−4x−2=(x−4)(x+3)(x+3)(x−2)=x−4x−2

c, Để P=−34P=−34

⇔x−4x−2=−34⇔x−4x−2=−34

⇔4(x−4)=−3(x−2)⇔4(x−4)=−3(x−2)

⇔4x−16+3x−6=0⇔4x−16+3x−6=0

⇔7x−22=0⇔7x−22=0

⇔x=227⇔x=227

d, Để P có giá trị nguyên

⇔x−4⋮x−2⇔x−4⋮x−2

⇔(x−2)−2⋮x−2⇔(x−2)−2⋮x−2

⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}

x−2x−21-12-2
x3140

e,

x2−9=0x2−9=0

⇒x2=9⇒[x=3x=−3⇒x2=9⇒[x=3x=−3

Với x=3,có :

x−4x−2=3−43−2=−11=−1x−4x−2=3−43−2=−11=−1

Với x=-3,có :

x−4x−2=−3−4−3−2=75x−4x−2=−3−4−3−2=75

18 tháng 12 2016

rút gọn cả 3 phân thức nhé

rồi tìm điều kiện xác định

và tính giá trị để biểu thức =0 nha 

mk gợi ý thế tự làm nha

k mk nhé cảm ơn

31 tháng 5 2017

a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b) bạn rút gọn, biểu thức sẽ bằng 4 

=> giá tri của biểu thức sẽ không phụ thuộc vào biến x

31 tháng 5 2017

tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái