K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Sơ đồ con đường

Lời giải chi tiết

Phân tích tích đã cho thành tổng, sau đó ta xét tính chia hết cho 2 từng số hạng trong tổng và áp dụng dấu hiệu chia hết của tổng để kết luận.

Ta có:  ( n + 2012 2013 ) + ( n + 2013 2012 ) = 2 n + 2012 2013 + 2013 2012

Mà  2 n ⋮ 2 2012 ⋮ 2 ⇒ 2012 2013 ⋮ 2 2013 ⋮ 2 ⇒ 2013 2012 ⋮ 2  

nên  C = A / B = 341 ; 342 ; 343 ; 343 ; 346 ; 347 ; 348 ; 349 2 n + 2012 2013 + 2013 2012 ⋮ 2  

hay  ( n + 2012 2013 ) + ( n + 2013 2012 ) là một số lẻ.

Suy ra, một trong hai số phải có một số chẵn.

Do vậy,  ( n + 2012 2013 ) . ( n + 2013 2012 ) là một số chẵn.

Vậy với mọi  n ∈ ℕ thì  ( n + 2012 2013 ) ( n + 2013 2012 ) ⋮ 2 .

 

19 tháng 11 2016

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

28 tháng 2 2019

Ta có

A=\(\dfrac{2011+2012}{2012+2013}\)=\(\dfrac{2011}{2012+2013}\)+\(\dfrac{2012}{2012+2013}\)(1)

B=\(\dfrac{2011}{2012}\)+\(\dfrac{2012}{2013}\)(2)

=>A>B

A lớn

B nhỏ

28 tháng 2 2019

gõ nhầm

phải là A<B

A nhỏ

B lớn

27 tháng 1 2016

\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)

\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)

\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Vậy M>N

17 tháng 4 2018

\(2012M=\frac{2012^{2013}}{2013^{2013}}\) 

17 tháng 4 2018

\(2012M=\frac{2012^{2013}}{2013^{2013}}=\frac{2012}{2013}\) 

=>\(M=\frac{2012}{2013}:2012=\frac{1}{2013}\) 

\(2012N=\frac{2012\left(2012^{2012}+2012\right)}{2013^{2013}+2013}=\frac{2012^{2013}+2012^2}{2013^{2013}+2013}\) 

=>\(N=\frac{2012+2012^2}{2013+2013}:2012=\frac{4050156}{4026}:2012=\frac{1}{2}\) 

=>\(\frac{1}{2013}< \frac{1}{2}\) (vì phân số nào có mẫu bé hơn thì phân số đó lớn hơn)

=> M < N

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1

18 tháng 10 2015

bạn nhớ **** mình nha 

2011^n ( n E N*) thì luôn cho ta một số có tận cùng là 1, là số lẻ

2012^n luôn cho ta một số có tận cùng là một số chẵn

2013^n luôn cho ta một số tận cùng là số lẻ 

=> 2011^n + 2012^n +2013^n = lẻ + chẵn + lẻ = chẵn chia hết cho 2 

=> tổng đó chia 2 dư 0

4 tháng 1 2016

Xét N có:

\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Ta các số hạng của M và N có:

\(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\) (1)

\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\) (2)

\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\) (3)

Từ (1);(2);(3) => M >