Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25-[50-(2^3.17-2^3.14)]
=25-[50-(8.17-8.14)]
=25-[50-(136-112)]
=25-[50-24]
=25-26
=-1
|-128|: [45^2-(2010-2008.1^2010)]
=128:[45^2-(2010-2008.1)]
=128:[45^2-(2010-2008)]
=128:[45^2-2]
=128:[2025-2]
=128:2023
=0,063 (chắc mik làm sai b đấy :( )
25-[50-(2^3.17-2^3.14)]=25-{50-[2^3.(17-14)]}
=25-{50-[8.3]}
=25-{50-24}
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
Câu1:
a: \(=2008^2-\left(2008-2\right)\left(2008+2\right)\)
\(=2008^2-\left(2008^2-4\right)\)
=4
b: \(=\dfrac{23\cdot29\cdot10101}{23\cdot29\cdot10101}=1\)
c: \(=\dfrac{\left(2^{17}+5^{17}\right)\left(3^{14}-5^{12}\right)\cdot\left(16-16\right)}{15^2+5^3+67^7}\)
=0
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}=2\times\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{240}\right)\)
\(A=2\times\left(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+....+\dfrac{1}{15\times16}\right)\)
\(A=2\times\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\times\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{3}{8}\)
b) cậu đi tìm số sốm hạng là : \(\left(2010-1\right):1+1=2010\)
\(\Rightarrow\)số cặp trong phép tính là : \(2010:2=1005\)(cặp)
\(\Rightarrow B=1-2+3-4+...+2009-2010\)(1005 cặp)
\(\Rightarrow\left(1-2\right)+\left(3-4\right)+...+\left(2009-2010\right)\)
\(\Rightarrow B=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)(1005 số -1)
\(\Rightarrow B=\left(-1\right).1005\)
\(\Rightarrow B=\left(-1005\right)\)
cậu tik cho mik nhé!!!
Bài 1.
a) \(\dfrac{3}{14}.\dfrac{7}{20}+\dfrac{13}{20}=\dfrac{3}{40}+\dfrac{13}{20}=\dfrac{3}{40}+\dfrac{26}{40}=\dfrac{29}{40}\).
b) \(\left(2.3^{2010}+12.3^{2010}-3.3^{2010}\right):3^{2012}\)
\(=3^{2010}\left(2+12-3\right):3^{2012}\)
\(=3^{2010}.11:3^{2012}\)
\(=\left(3^{2010}:3^{2012}\right).11\)
\(=\dfrac{1}{9}.11\)
\(=\dfrac{11}{9}\).
Bài 2.
a) \(\left(5^{14}.25^{10}\right):125^3\)
\(=\left[5^{14}.\left(5^2\right)^{10}\right]:\left(5^3\right)^3\)
\(=\left[5^{14}.5^{20}\right]:5^9\)
\(=5^{34}:5^9\)
\(=5^{25}\).
b) \(\left(\dfrac{1}{2}\right)^5.\left(\dfrac{1}{64}\right)^9:\left(\dfrac{1}{16}\right)^5\)
\(=\dfrac{1}{2^5}.\dfrac{1}{64^9}:\dfrac{1}{16^5}\)
\(=\dfrac{1}{2^5}.\dfrac{1}{\left(2^6\right)^9}:\dfrac{1}{\left(2^4\right)^5}\)
\(=\dfrac{1}{2^5}.\dfrac{1}{2^{54}}:\dfrac{1}{2^{20}}\)
\(=\dfrac{1}{2^{59}}:\dfrac{1}{2^{20}}\)
\(=\dfrac{2^{20}}{2^{59}}\)
\(=\dfrac{1}{2^{39}}\).
a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017
N = ( 1 - 5 - 9 + 13 ) + ( 17 - 21 - 25 + 29 ) + .... + ( 2001 - 2005 - 2009 + 2013 ) + 2017
N = 0 + 0 + ... + 0 + 2017
N = 2017
a) 25 –[ 50 – ( 2 3 . 17 – 2 3 . 14 )]
= 25 – ( 50 – 23 . 3 ) = 25 – ( 50 – 24 )
= 25 – 26 = -1
b) |-128| : [ 45 2 – ( 2010 – 2008 0 . 1 2010 )]
= 128 : [ 2025 – ( 2010 – 1 . 1 )] = 128 : ( 2025 – 2009 ) = 128 : 16 = 8