K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Bài làm:

Ta có: \(2x^2-3xy-2y^2\)

\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(2x+y\right)\left(x-2y\right)\)

26 tháng 8 2020

\(2x^2-3xy-2y^2\)

\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

7 tháng 1 2019

\(2x^2+y^2-3xy+3x-2y+1=0\)

\(2,25x^2-2.1,5.x\left(y-1\right)+\left(y-1\right)^2-0,25x^2=0\)

\(\left(1,5x-y+1\right)^2-\left(0,5x\right)^2=0\)

\(\left(1,5x-y+1-0,5x\right)\left(1,5x-y+1+0,5x\right)=0\)

\(\left(x-y+1\right)\left(2x-y+1\right)=0\)

Đề bài là j thì b tự lm nhé~

4 tháng 1 2020

\(x^3-3xy^2-2y^3\)

\(=x^3-xy^2-2xy^2-2y^3\)

\(=x\left(x^2-y^2\right)-2y^2\left(x+y\right)\)

\(=x\left(x-y\right)\left(x+y\right)-2y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy-2y^2\right)\)

\(=\left(x+y\right)\left(x^2-2xy+xy-2y^2\right)\)

\(=\left(x+y\right)\left[x\left(x-2y\right)+y\left(x-2y\right)\right]\)

\(=\left(x+y\right)^2\left(x-2y\right)\)

4 tháng 1 2020

\(x^3-3xy^2-2y^3\)

\(=x^3-xy^2-2xy^2-2y^3\)

\(=x\left(x^2-y^2\right)-2y^2\left(x+y\right)\)

\(=x\left(x-y\right)\left(x+y\right)-2y^2\left(x+y\right)\)

\(=\left(x+y\right)\left[x\left(x+y\right)-2y^2\right]\)

\(=\left(x+y\right)\left(x^2+xy-2y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy-xy-2y^2\right)\)

\(=\left(x+y\right)\left[x\left(x-2y\right)-y\left(x-2y\right)\right]\)

\(=\left(x-y\right)\left(x-y\right)\left(x-2y\right)\)

\(=\left(x-y\right)^2\left(x-2y\right)\)

21 tháng 10 2017

Thiếu y3 nha bạn :

\(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 10 2016

Làm tính nhân

(4x3+3xy2-2y3).(3x2-5xy-6y2)

=12x5+12y5-20x4y-36x2y3-8xy4

Phân tích đa thức thành nhân tử

10x3+5x2y-10x2y-10xy2+5y3

=10x3-5x2y-10xy2+5y3

=5(2x3-x2y-2xy2+y3-)

21 tháng 1 2017

\(x^4+y^2-2x^2y+x^2+2x-2y\)

\(=\left(y^2-x^2y-xy\right)-\left(x^2y-x^4-x^3\right)+\left(xy-x^3-x^2\right)-\left(2y-2x^2-2x\right)\)

\(=y\left(y-x^2-x\right)-x^2\left(y-x^2-x\right)+x\left(y-x^2-x\right)-2\left(y-x^2-x\right)\)

\(=\left(y-x^2+x-2\right)\left(y-x^2-x\right)\)

20 tháng 8 2020

Bài làm:

Ta có: \(a^2x^2+b^2y^2-a^2y^2-b^2x^2\)

\(=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right)\left(x^2-y^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x+y\right)\)

20 tháng 8 2020

\(a^2x^2+b^2y^2-a^2y^2-b^2x^2\)

\(=\left(a^2x^2-a^2y^2\right)-\left(b^2x^2-b^2y^2\right)\)

\(=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right)\left(x^2-y^2\right)\)