Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E mới hk lớp 8 nên chỉ thử có j thông cảm!!
Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)
=> \(4\left(n^2+3n+5\right)⋮121\)
=> \(\left(4n^2+12n+9\right)+11⋮121\)
=> \(\left(2n+3\right)^2+11⋮121\)
Vì \(4\left(n^2+3n+5\right)⋮11\) ( vì \(121⋮11\)) và \(11⋮11\)
=> \(\left(2n+3\right)^2⋮11\)
=> \(\left(2n+3\right)^2⋮121\) ( vì 11 là số nguyên tố)
=> \(\left(2n+3\right)^2+11\) không chia hết cho 121 ( vì 11 không chia hết cho 121)
hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121
=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau) ( đpcm)
2/ Giả sử:
\(\sqrt{n+2}-\sqrt{n+1}>\sqrt{n+1}-\sqrt{n}\)
\(\Leftrightarrow\sqrt{n+2}+\sqrt{n}>2\sqrt{n+1}\)
\(\Leftrightarrow2n+2+2\sqrt{n^2+2n}>4n+4\)
\(\Leftrightarrow\sqrt{n^2+2n}>n+1\)
\(\Leftrightarrow n^2+2n>n^2+2n+1\)
\(\Leftrightarrow0>1\) (sai)
Vậy \(\sqrt{n+2}-\sqrt{n+1}< \sqrt{n+1}-\sqrt{n}\)
Ta có: \(VT-VP\ge\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\frac{a+b+c-3}{3}\right)\ge0\) (áp dụng bđt cô si cho 3 số dương)
P/s: Is it true? Trong sách nâng cao và pt toán 8 của tác giả vũ hữu bình em nhớ nó phức tạp lắm mà sao em làm lai đơn giản nhỉ?