Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x_2\)là nghiệm của phương trình
=> \(x_2^2-5x_2+3=0\)
=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)
Khi đó
\(A=||x_1-2|-|x_2-2||\)
=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)
=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)
Mà A>0(đề bài)
=> A=1
Vậy A=1
\(9y^2+\left(2y+3\right)\left(y-x\right)\) nha mn mik ghi sai đề
a/ ĐKXĐ \(x\ge1\)
\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)
\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)
\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)
\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)
Vậy nghiệm của BPT là \(1\le x< 2\)
b/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)
\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)
\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)
\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)
\(\Rightarrow3\le x< 4\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)
\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)
- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{2}{3}\) hai vế ko âm
\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)
\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)
Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)
Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :
Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến
\(\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)^3=x\)
\(\Leftrightarrow2x-1+x-1+3\left(\sqrt[3]{2x-1}\right)^2\sqrt[3]{x-1}+3\sqrt[3]{2x-1}.\left(\sqrt[3]{x-1}\right)^2=x\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=2-2x\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\sqrt[3]{x}=2-2x\)
\(\Leftrightarrow\left(3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\sqrt[3]{x}\right)^3=\left(2-2x\right)^3\)
\(\Leftrightarrow27x\left(x-1\right)\left(2x-1\right)=8\left(1-x\right)^3\)
\(\Leftrightarrow27x\left(x-1\right)\left(2x-1\right)+8\left(x-1\right)^3=0\)
\(\Leftrightarrow\left(x-1\right)\left(27x\left(2x-1\right)+8\left(x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(54x-27+8\left(x^2-2x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(54x-27+8x^2-16x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^2+38x-19\right)=0\)
tới đây tìm đc x
Điều kiện: \(x\ge\sqrt[3]{2}\)
Ta có:
\(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
\(\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+\left(x-3\right)=\sqrt{x^3-2}-5\)
\(\Leftrightarrow\frac{x^2-9}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+\left(x-3\right)=\frac{x^3-27}{\sqrt{x^3-2}+5}\)
\(\Leftrightarrow x=3\) (thỏa mãn điều kiện)
Hoặc:
\(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1-\frac{x^2+3x+9}{\sqrt{x^3-2}+5}=0\) (vô nghiệm với mọi \(x\ge\sqrt[3]{2}\)
Vậy \(S=\left\{3\right\}\)