K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

Ta có:

\(\sqrt{1+\sqrt{2\sqrt{3}}}\)và \(2\)

\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2\) và \(4\)

   Do đó ta có:\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2=1+\sqrt{2\sqrt{3}}=1+\sqrt{\sqrt{12}}\)

                      \(4=1+3=1+\sqrt{9}=1+\sqrt{\sqrt{81}}\)

Vì \(\sqrt{\sqrt{12}}< \sqrt{\sqrt{81}}\)

            \(\Rightarrow\sqrt{1+\sqrt{2\sqrt{3}}}< 2\)

25 tháng 8 2017

\(\sqrt{1+\sqrt{2}\sqrt{3}< 2}\)

CHUẨN KO CẦN CHỈNH LUÔN !

4 tháng 10 2016

k đi mình làm cho

8 tháng 7 2016

Đặt \(A=\sqrt{7}-\sqrt{6};B=\sqrt{6}-\sqrt{5}\)

Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)(Có thể chứng minh bằng biến đổi tương đương)

Được : \(\frac{\sqrt{5}+\sqrt{7}}{2}< \sqrt{\frac{5+7}{2}}\Leftrightarrow\frac{\sqrt{5}+\sqrt{7}}{2}< \sqrt{6}\Leftrightarrow\sqrt{5}+\sqrt{7}-2\sqrt{6}< 0\)

Xét \(A-B=\sqrt{5}+\sqrt{7}-2\sqrt{6}< 0\Rightarrow A< B\)

Ta có: \(\sqrt{7}-\sqrt{6}\approx0.1\)

\(\sqrt{6}-\sqrt{5}\approx0.2\)

\(\Rightarrow\sqrt{7}-\sqrt{6}< \sqrt{6}-\sqrt{5}\)

19 tháng 7 2018

7 nhỏ hơn 9 nên căn 7 nhỏ hơn căn 9 hay căn 7 nhỏ hơn 3

15 nhỏ hơn 16 nên căn 15 nhỏ hơn căn 16 hay căn 15 nhỏ hơn 4 

Vậy căn 7 + căn 15 nhỏ hơn 7

Do 21 lớn hơn 20 nên căn 21 lớn hơn căn 20

5 nhỏ hơn 6 nên căn 5 nhỏ hơn căn 6

Nên căn 21 trừ căn 5 lớn hơn căn 20 trừ căn 6

17 tháng 6 2019

a) \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

Vậy \(\sqrt{7}+\sqrt{15}< 7\)

b) Vì \(\hept{\begin{cases}\sqrt{21}>\sqrt{20}\\-\sqrt{5}>-\sqrt{6}\end{cases}}\Rightarrow\sqrt{21}+\left(-\sqrt{5}\right)>\sqrt{20}+\left(-\sqrt{6}\right)\)

hay \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)