Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{1+\sqrt{2\sqrt{3}}}\)và \(2\)
\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2\) và \(4\)
Do đó ta có:\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2=1+\sqrt{2\sqrt{3}}=1+\sqrt{\sqrt{12}}\)
\(4=1+3=1+\sqrt{9}=1+\sqrt{\sqrt{81}}\)
Vì \(\sqrt{\sqrt{12}}< \sqrt{\sqrt{81}}\)
\(\Rightarrow\sqrt{1+\sqrt{2\sqrt{3}}}< 2\)
Đặt \(A=\sqrt{7}-\sqrt{6};B=\sqrt{6}-\sqrt{5}\)
Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)(Có thể chứng minh bằng biến đổi tương đương)
Được : \(\frac{\sqrt{5}+\sqrt{7}}{2}< \sqrt{\frac{5+7}{2}}\Leftrightarrow\frac{\sqrt{5}+\sqrt{7}}{2}< \sqrt{6}\Leftrightarrow\sqrt{5}+\sqrt{7}-2\sqrt{6}< 0\)
Xét \(A-B=\sqrt{5}+\sqrt{7}-2\sqrt{6}< 0\Rightarrow A< B\)
Ta có: \(\sqrt{7}-\sqrt{6}\approx0.1\)
\(\sqrt{6}-\sqrt{5}\approx0.2\)
\(\Rightarrow\sqrt{7}-\sqrt{6}< \sqrt{6}-\sqrt{5}\)
7 nhỏ hơn 9 nên căn 7 nhỏ hơn căn 9 hay căn 7 nhỏ hơn 3
15 nhỏ hơn 16 nên căn 15 nhỏ hơn căn 16 hay căn 15 nhỏ hơn 4
Vậy căn 7 + căn 15 nhỏ hơn 7
Do 21 lớn hơn 20 nên căn 21 lớn hơn căn 20
5 nhỏ hơn 6 nên căn 5 nhỏ hơn căn 6
Nên căn 21 trừ căn 5 lớn hơn căn 20 trừ căn 6
a) \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)
b) Vì \(\hept{\begin{cases}\sqrt{21}>\sqrt{20}\\-\sqrt{5}>-\sqrt{6}\end{cases}}\Rightarrow\sqrt{21}+\left(-\sqrt{5}\right)>\sqrt{20}+\left(-\sqrt{6}\right)\)
hay \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
thanh kiu sư phụ White Hold