\(\sqrt{2005}-\sqrt{2004}\)

\(\sqrt{2004}-\sqrt{2003}\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

Giả sử: \(\sqrt{2005}-\sqrt{2004}\le\sqrt{2004}-\sqrt{2003}\)

\(\Leftrightarrow\sqrt{2005}+\sqrt{2003}\le2\sqrt{2004}\)

\(\Leftrightarrow\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(2\sqrt{2004}\right)^2\)

\(\Leftrightarrow2005+2\sqrt{2005.2003}+2003\le4.2004\)

\(\Leftrightarrow4008+2\sqrt{\left(2004+1\right)\left(2004-1\right)}\le4008+4008\)

\(\Leftrightarrow2\sqrt{2004^2-1}\le4008\)

\(\Leftrightarrow\sqrt{2004^2-1}\le2004\)

\(\Leftrightarrow\sqrt{2004^2-1}\le\sqrt{2004^2}\)

Vậy giả sử đúng

\(\Rightarrow\sqrt{2005}-\sqrt{2004}\le\sqrt{2004}-\sqrt{2003}\)

18 tháng 8 2019

dùng sai dấu rồi ạ :)) dùng dấu <  thay cho dấu  ≤  nhé

19 tháng 7 2018

Ta có: +) 2005 - 2004 = 1 \(\Leftrightarrow\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)=1\)

\(\Leftrightarrow\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) (1)

+) \(2004-2003=1\)

\(\Leftrightarrow\left(\sqrt{2004}-\sqrt{2003}\right)\left(\sqrt{2004}+\sqrt{2003}\right)=1\)

\(\Leftrightarrow\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\) (2)

\(\sqrt{2005}+\sqrt{2004}>\sqrt{2004}+\sqrt{2003}\)

\(\Rightarrow\dfrac{1}{\sqrt{2005}+\sqrt{2004}}< \dfrac{1}{\sqrt{2004}+\sqrt{2003}}\) (3)

Từ (1), (2) và (3) \(\Rightarrow\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)

22 tháng 10 2017

Ta có : \(\sqrt{2005}-\sqrt{2004}\) ; \(\sqrt{2004}-\sqrt{2003}\)

=> \(\sqrt{2005}>\sqrt{2004}>\sqrt{2003}\)

=> \(\sqrt{2005}-\sqrt{2004}\)\(\sqrt{2004}-\sqrt{2003}\)

13 tháng 2 2020

\(\sqrt{2005}-\sqrt{2004}=0.01116778328\)

\(\sqrt{2004}-\sqrt{2003}=0.01117057\)

\(\Rightarrow\sqrt{2005}-\sqrt{2004}>\sqrt{2004}-\sqrt{2003}\)

3 tháng 7 2017

Áp dụng BĐT CAuchy-Schwarz ta có:

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)

\(\le\left(1+1\right)\left(2003+2005\right)\)

\(=2\cdot4008=8016\)

\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)

3 tháng 7 2017

MÌNH LỚP 7 NHƯNG TRẢ LỜI ĐƯỢC LÈ

AH
Akai Haruma
Giáo viên
25 tháng 8 2018

Lời giải:

Ta thấy:

\((\sqrt{2003}+\sqrt{2005})^2=2003+2005+2\sqrt{2003.2005}\)

\(=2.2004+2\sqrt{2003.2005}=2.2004+2\sqrt{(2004-1)(2004+1)}\)

\(=2.2004+2\sqrt{2004^2-1}< 2.2004+2\sqrt{2004^2}=4.2004\)

\(\Rightarrow \sqrt{2003}+\sqrt{2005}<2 \sqrt{2004}\)

25 tháng 9 2016

\(\sqrt{2003}\)+\(\sqrt{2005}\)<2\(\sqrt{2004}\)

26 tháng 9 2016

ta có :\(\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(1^2+1^2\right)\left(2005+2003\right)=2.4008\)(bđt bu-nhia-cop xki)

\(\left(2\sqrt{2004}\right)^2=4.2004=2.4008\)

\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

14 tháng 6 2017

Ta có

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)

Quy về so sánh

\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra

\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)

27 tháng 6 2017

kết quả hơi kì bạn ơi

a) Ta có :\(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\cdot\sqrt{3}=5+2\sqrt{6}>5=\left(\sqrt{5}\right)^2\)

\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>\left(\sqrt{5}\right)^2\Leftrightarrow\sqrt{2}+\sqrt{3}>\sqrt{5}\)

30 tháng 6 2019

a) \(\sqrt{2}+\sqrt{3}>\sqrt{5}\)

b) \(\sqrt{2003}+\sqrt{2005}< 2.\sqrt{2004}\)

HOK TOT

14 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005

được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)

\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

28 tháng 5 2019

Có:\(\sqrt{2005}-\sqrt{2004}=\frac{2005-2004}{\sqrt{2005}+\sqrt{2004}}=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

;\(\sqrt{2004}-\sqrt{2003}=\frac{2004-2003}{\sqrt{2004}+\sqrt{2003}}=\frac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2005}+\sqrt{2004}>\sqrt{2004}+\sqrt{2003}\)\(\Rightarrow\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)