K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :

Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.

Vậy parabol cần tìm là y = x2 – 4x + 2.

5 tháng 6 2017

Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).

9 tháng 11 2021

bấm máy giải hệ ra 3 chứ sao lại là -3 nhỉ

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


9 tháng 10 2019

undefined

27 tháng 10 2018

Câu 1: (P) : \(y=ax^2+bx+c\)

Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2

nên (P) cắt hai điểm A(-1;0) và B (2;0)

A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)

B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)

Mà (P) cắt trục Oy tại điểm có tung độ bằng -2

nên (P) cắt C ( 0;-2)

C (0;-2) ∈ (P) ⇔ -2 = c (3)

Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Vậy (P) : \(y=x^2-x-2\)

Câu 2: (P) : \(y=ax^2+bx+c\)

Vì (P) có đỉnh I ( -2;-1)

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)

Mà (P) cắt trục tung tại điểm có tung độ bằng -3

nên (P) cắt A( 0;-3)

A(0;-3) ∈ (P) ⇔ -3 = c (2)

Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)

Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)

12 tháng 8 2018

vì có ít time nên mk hướng dẩn thôi nha .

câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)

và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)

từ (1) (2) ta có hệ : \(\Rightarrow a;b;c\)

câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)

thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .

câu 3 : tương tự câu 2 thôi nha

từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................

12 tháng 8 2018

Ok tks fen

5 tháng 6 2017

a)

30 tháng 3 2017

Tọa độ đỉnh \(\left(\dfrac{-b}{2a},\dfrac{-\Delta}{4a}\right)\)

Trục đối xứng \(x=\dfrac{-b}{2a}\)

26 tháng 10 2018

a) (P) cắt trục Ox tại điểm M(2;0) nên :

0=a.2^2+3.2-2=>a=-1

vậy (P): y=-x^2+3x-2

b) trục đối xứng x=-3 hay

\(-\dfrac{b}{2a}=-3\Leftrightarrow\dfrac{-3}{2a}=-3\Rightarrow a=\dfrac{1}{2}\\ \Rightarrow\left(P\right):y=\dfrac{1}{2}x^2+3x-2\)

c) có đỉnh I(-1/2;-11/4)=>

\(a.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2=-\dfrac{11}{4}\Rightarrow a=3\Rightarrow\left(P\right):y=3x^2+3x-2\)