K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

x2 + 2x + 1 - y2 = (x + 1)2-y2 = (x + y + 1)(x - y + 1)

Thay x = 94,5 và y = 4,5 ta có:

(x + y + 1)(x - y + 1)

= (94,5 + 4,5 + 1)(94,5 - 4,5 + 1)

= 100.91

= 9100

6 tháng 10 2019

\(A=x^2+2x+1-y^2\)

\(A=\left(x^2+2x+1\right)-y^2\)

\(A=\left(x+1\right)^2-y^2\)

\(A=\left(x+1-y\right).\left(x+1+y\right)\)

Thay \(x=94,5\) và \(y=49,75\) vào biểu thức A ta được :

\(A=\left(94,5+1-49,75\right).\left(94,5+1+49,75\right)\)

\(A=45,75.145,25\)

\(A=6645,1875\)

Vậy giá trị của biểu thức A tại \(x=94,5\) và \(y=49,75\) là \(6645,1875\)

 Chúc bạn học tốt !!!

17 tháng 12 2018

thay x và y vào là đc mà bạn

18 tháng 12 2018

\(a,x^2+4y^2-4xy\)

\(=x^2-4xy+4y^2\)

\(=x^2-2.x.2y+\left(2y\right)^2\)

\(=\left(x-2y\right)^2\)

Thay x = 18 và y = 4 vào biểu thức ta có :

\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=1000\)

KL :.....

25 tháng 6 2018

Nguyễn Thanh Hằng giúp vs !!! khocroi

5 tháng 7 2018

a)  \(M=x^2+4y^2-4xy=\left(x-2y\right)^2\)

Tại    \(x=18;y=4\)thì  

       \(M=\left(18-2.4\right)^2=10^2=100\)

b)  \(N=8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)

Tại    \(x=6;y=-8\)thì

       \(N=\left[2.6-\left(-8\right)\right]^3=20^3=8000\)

5 tháng 7 2018

a)\(M=x^2-4xy+4y^2\)

\(M=\left(x-2y\right)^2\)

Thay x=18 và y=4 vào biểu thức M ta được:

M=(18-2.4)2=100

b)\(N=\left(2x\right)^3-3\left(2x\right)^2\left(y\right)+3\left(2x\right)\left(y\right)^2-\left(y\right)^3\)

\(N=\left(2x-y\right)^2\)

Thay x=6 và y=-8 vào Biểu thức N ta được:

N=[2.6-(-8)]2=400

5 tháng 8 2020

a/ \(N=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=2x\left(4x^2-2xy+y^2\right)+y\left(4x^2-2xy+y^2\right)\)

\(=8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\)

\(=8x^3+y^3\)

Thay: \(x=\frac{1}{2}\); \(y=\frac{1}{3}\) vào N ta được

\(8.\left(\frac{1}{2}\right)^3+\left(\frac{1}{3}\right)^3\)

\(=8.\frac{1}{8}+\frac{1}{27}\)

\(=1+\frac{1}{27}=\frac{27}{27}+\frac{1}{27}=\frac{28}{27}\)

b/ \(P=2\left(x+1\right)\left(x^2-x+1\right)-2\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(2x+2\right)\left(x^2-x+1\right)-\left[\left(2x-2\right)\left(x^2+x+1\right)\right]\)

\(=2x\left(x^2-x+1\right)+2\left(x^2-x+1\right)-\left[2x\left(x^2+x+1\right)-2\left(x^2+x+1\right)\right]\)

\(=2x^3-2x^2+2x+2x^2-2x+2-\left(2x^3+2x^2+2x-2x^2-2x-2\right)\)

\(=2x^3-2x^2+2x+2x^2-2x+2-2x^3-2x^2-2x+2x^2+2x+2\)

\(=4\)

c/ \(Q=\left(2x-1\right)\left(2x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(2x\right)^2-1^2-4.\left(x^2-1^2\right)\)

\(=4x^2-1-4x^2+4\)

\(=3\)

P/s: Sao 2 câu cuối ko phụ thuôc vào giá trị của x vậy? Ko chắc!

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

2 tháng 9 2020

a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)

Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)

b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)

Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)

c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)

\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)

Thay \(x=234\)và \(y=465\)vào biểu thức ta được:

\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)

2 tháng 9 2020

a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)

\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:

\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)

b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)

Tại x = 103 thì giá trị của BT là:

\(\left(103-3\right)^3=100^3=1000000\)

c) Ta có: \(4x^2-y^2-2y-1\)

\(=\left(2x\right)^2-\left(y+1\right)^2\)

\(=\left(2x-y-1\right)\left(2x+y+1\right)\)

Tại x = 234, y = 465 thì giá trị của BT là:

\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)

\(=2\cdot934=1868\)