Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+xy+x\)
\(\Leftrightarrow x\left(x+y+1\right)\)
Tại x=77 và y=22 có:
\(\Leftrightarrow77\left(77+22+1\right)\)
\(=7700\)
b) \(x\left(x-y\right)+y\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\)
\(\Leftrightarrow x^2-y^2\)
Tại x=53 và y=3, ta có:
\(53^2-3^2=2800\)
* Với M
Ta có M= x2+y2 = x2+y2+2xy-2xy=(x+y)2 - 2xy= (-9)2 - 2.18 = 81- 36 = 45
* Với N
Ta có M = x4 + y4 = (x2)2 + (y2)2 + 2(xy)2 - 2(xy)2 = (x2+y2)2 + 2 (xy)2= 452 + 2. 182= 2673
* Với T
Ta có T = x2 - y2 => chịu
x^2 +y^2 =x^2 + 2xy + y^2 - 2xy
(x+y)^2 - 2xy
(-9)^2-2*18
81 - 36
45
a. 2x2-xy
= x(2x-y)
b. x2-xy-x+y
= (x2-xy)-(x+y)
=x(x-y)-(x-y)
=(x-y)(x-1)
a) A = 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2 = 5(x2 - 9) + (4x2 + 12x + 9) + (x2 - 12x + 36) = 10x2
Tại x = -2,A = 10.(-2)2 = 40
b) x2 + y2 = x2 + 2xy + y2 - 2xy = (x + y)2 - 2.(-25) = 102 + 50 = 150
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
a. x2 + xy + x tại x = 77 và y =22
Ta có : x2 + xy + x = x( x + y + 1)
Thay x = 77 ; y = 22 vào biểu thức ta được
77 . ( 77 + 22 +1 ) =77 . 100 = 7700
Vậy giá trị của biểu thức là 7700 tại x = 77 và y =22
b. x( x - y ) + y( y - x ) tại x = 53 và y = 3
Ta có : x( x - y ) +y ( y - x)
=x( x - y ) - y ( x - y )
=( x - y )( x - y ) = ( x - y )2
Thay x = 53 và y = 3 vào biểu thức ta được
( 53 - 3 )2 = 502 = 2500
Vậy giá trị biểu thức là 2500 tại x = 53 và y = 3
a) Ta có : \(x^2+xy+x=x\left(x+y+1\right)\)
Thay x = 77 và y = 22
\(77\left(77+22+1\right)=77.100=7700\)
b) \(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)
Thay vào biểu thức x = 53 y = 3
\(\left(53-3\right)^2=50^2=2500\)
Có: \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Rightarrow x^2+y^2=\frac{25xy}{12}\)
Có: \(P=\frac{x-y}{x+y}\)
\(\Rightarrow P^2=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}=\frac{\frac{25xy}{12}-2xy}{\frac{25xy}{12}+2xy}=\frac{\frac{xy}{12}}{\frac{49xy}{12}}=\frac{1}{49}\)
VÌ: \(x< y< 0\Rightarrow x-y< 0;x+y< 0\)
=> \(P>0\)
=> \(P=\frac{1}{7}\)
mk chưa hiểu ở phần thứ 3 của bước thứ 4 bn trình bày rõ hơn đc ko
\(P=\left(x+y\right)\left\{\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\right\}\\ \)
Thây số vào
VÌ \(x+y=7;xy=10\)
\(\Rightarrow x,y=5\)và \(2\)
\(\Rightarrow P=\left(5+2\right)\left(5^2+2^2\right)\left(5^3+2^3\right)\)
\(\Rightarrow P=7.29.133\)
\(P=26999\)
Ta có: x 2 + xy + x = x(x + y + 1)
Thay x = 77, y = 22 vào biểu thức, ta được:
x(x + y + 1) = 77.(77 + 22 + 1) = 77.100 = 7700