K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Đáp án D

Phương pháp: Sử dụng công thức tính chu kì của con lắc đơn  T = 2 π l g

Cách giải:

Công thức tính chu kì dao động của con lắc đơn  T = 2 π l g => Chu kì sóng tỉ lệ thuận với  l  

=> Khi chiều dài dây giảm 2 lần thì chu kì giảm  2  lần

=>  T ' = T 2  => Chọn D

19 tháng 7 2017

Đáp án D

O
ongtho
Giáo viên
19 tháng 11 2015

Gia tốc biểu kiến của con lắc nằm trong thang máy chuyển động với gia tốc \(\overrightarrow a\) là:

 \(\overrightarrow {g'} = \overrightarrow {g} -\overrightarrow a \)

Thang máy đi lên chậm dần đều nên \(\overrightarrow g \uparrow \uparrow \overrightarrow a\) => \( {g'} ={g} -a \)

Mà \(a = \frac{g}{2} => g' = g - \frac{g}{2} = \frac{g}{2}.\)

Chu kì của con lắc lúc này là \(T' =2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{2l}{g}} = T\sqrt{2}.\)

 

6 tháng 1 2018

Chọn A

4 tháng 6 2016
Ta có:
 \(T=2\pi\sqrt{\frac{l}{g}}\)
\(T'=2\pi\sqrt{\frac{l'}{g}}\)
\(\Rightarrow\frac{T'}{T}=\sqrt{\frac{l'}{l}}=\sqrt{2}\Rightarrow T'=2\sqrt{2}s\)
Đáp án D
O
ongtho
Giáo viên
19 tháng 11 2015

\(\overrightarrow {g'} =\overrightarrow g - \overrightarrow a \)

Ô tô chuyển động nằm ngang => \(\overrightarrow a \bot \overrightarrow g\)

=> \(g' = \sqrt{g^2+ a^2}\)

\(T = 2\pi \sqrt{\frac{l}{g}}\)

\(T' = 2\pi \sqrt{\frac{l}{g'}}\)

=> \(\frac{T}{T'} = \sqrt{\frac{g'}{g}} = \sqrt{\frac{\sqrt{g^2+a^2}}{g}} = 1,01\)

=> \(T'= \frac{2}{1,01} = 1,98 s.\)

24 tháng 8 2017

cho mình hỏi: Nếu trong trường hợp ôtô chuyển động thẳng chậm dần đều thì phải làm ntn ?

4 tháng 11 2018

28 tháng 7 2016

Chu kỳ dao động nhỏ của con lắc là
\(T=2\pi\sqrt{\frac{l}{9}}\Rightarrow T=2\pi\sqrt{\frac{0,36}{\pi^2}}=1,2\left(s\right)\)

Chọn A