K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

x 4  + 2 x 3  +  x 2  =  x 2 ( x 2  + 2x + 1) =  x 2 x + 1 2

2 tháng 10 2018

dễ mak

2 tháng 10 2018

nếu dễ thì trả lời hộ đi

27 tháng 10 2016

a, \(x^3-2x-4\) b, \(x^2+4x+3\) nhá

 

13 tháng 8 2017

Nghịch xíu :v

a, \(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x+2\right)\)

b, \(x^2+4x+3\)

\(=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

Chúc bạn học tốt!!!

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

11 tháng 12 2018

a, x^2-4x+3

=x^2-x-3x+3

=x(x-1)-3(x-1)

=(x-3)(x-1)

11 tháng 12 2018

\(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)

\(=\left(x-1\right).\left(x^3+3x^2+8x+12\right)=\left(x-1\right).\left(x+2\right).\left(x^2+x+6\right)\)

p/s: sai sót bỏ qua

2 tháng 10 2016

Ta có :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)

=> Đa thức trở thành 

\(\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Thay vào ta được 

Đt=\(\left(x^2+5x+5\right)^2\)

2 tháng 10 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)                 (1)

Đặt \(x^2+5x+5=t\)  thì (1)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

20 tháng 4 2017

a) x2 – 4x + 3 = x2 – x - 3x + 3

= x(x - 1) - 3(x - 1) = (x -1)(x - 3)

b) x2 + 5x + 4 = x2 + 4x + x + 4

= x(x + 4) + (x + 4)

= (x + 4)(x + 1)

c) x2 – x – 6 = x2 +2x – 3x – 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

d) x4+ 4 = x4 + 4x2 + 4 – 4x2

= (x2 + 2)2 – (2x)2

= (x2 + 2 – 2x)(x2 + 2 + 2x)


20 tháng 4 2017

Bài giải:

a) x2 – 4x + 3 = x2 – x - 3x + 3

= x(x - 1) - 3(x - 1) = (x -1)(x - 3)

b) x2 + 5x + 4 = x2 + 4x + x + 4

= x(x + 4) + (x + 4)

= (x + 4)(x + 1)

c) x2 – x – 6 = x2 +2x – 3x – 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

d) x4+ 4 = x4 + 4x2 + 4 – 4x2

= (x2 + 2)2 – (2x)2

= (x2 + 2 – 2x)(x2 + 2 + 2x)

30 tháng 9 2018

      \(x^3+4x^2+4x+3\)

\(=x^3+3x^2+x^2+3x+x+3\)

\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+x+1\right)\)

      \(x^2-y^2+4y-4\)

\(=x^2-\left(y^2-4y+4\right)\)

\(=x^2-\left(y-2\right)^2\)

\(=\left(x-y+2\right)\left(x+y-2\right)\)

      \(x^4+x^3y-xy^3-y^4\)

\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)

\(=\left(x+y\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt.

2 tháng 10 2019

a

\(x^2-3x-2=\left(x^2-3x+\frac{9}{4}\right)-\frac{17}{4}=\left(x-\frac{3}{2}\right)^2-\sqrt{\frac{17}{2}}^2\)

\(=\left(x-\frac{3}{2}-\sqrt{\frac{17}{2}}\right)\left(x-\frac{3}{2}+\sqrt{\frac{17}{2}}\right)\)

b

\(x^4+x^2-2=x^4-x^3+x^3-x^2+2x^2-2=x^3\left(x-1\right)+x^2\left(x-1\right)+2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3+x^2+2x+2\right)\)

c

\(x^3-19x-30=x^3+2x^2-2x^2-4x-15x-30\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x-15\right)\)