K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Gọi chiều dài của mảnh vườn là x (m) (x > 4)

Chiều rộng của mảnh vườn là x – 4 (m)

Diện tích của mảnh vườn là 320 m2 nên ta có phương trình:

x(x - 4) = 320

⇔ x 2 − 4 x − 320 = 0 Δ ' = 2 2 + 320 = 324 , ( Δ ' = 18 x 1 = 2 + 18 = 20 ; x 2 = 2 − 18 = − 16

x 2   =   - 16  không thỏa mãn điều kiện của ẩn 

Vậy chiều dài của mảnh vườn là 20m

Chiều rộng của mảnh vườn là 16 m

1 tháng 1 2017

Gọi chiều dài của mảnh vườn là x (m) (x > 4)

Chiều rộng của mảnh vườn là x – 4 (m)

Diện tích của mảnh vườn là 320 m2 nên ta có phương trình:

x(x - 4) = 320

⇔ x2 - 4x - 320 = 0

Δ' = 22 + 320 = 324, √(Δ') = 18

x1 = 2 + 18 = 20; x2 = 2 - 18 = -16

x2 = -16 không thỏa mãn điều kiện của ẩn

Vậy chiều dài của mảnh vườn là 20m

Chiều rộng của mảnh vườn là 16 m

14 tháng 6 2020

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b ( m ) ( \(0< a,b< 110\) )

Theo bài, ta có hệ phương trình: \(\hept{\begin{cases}a-b=17\\ab=110\end{cases}}\)

Đặt \(c=-b\)\(\Rightarrow\hept{\begin{cases}a+c=17\\a.c=-110\end{cases}}\)

\(\Rightarrow\)a và c là nghiệm của của phương trình: \(x^2-17x-110=0\)

\(\Delta=\left(-17\right)^2-4.1.\left(-110\right)=729\)

\(\Rightarrow\sqrt{\Delta}=\sqrt{729}=27\)

\(\Rightarrow x_1=\frac{-\left(-17\right)+27}{2}=\frac{17+27}{2}=\frac{44}{2}=22\)

\(x_2=\frac{-\left(-17\right)-27}{2}=\frac{17-27}{2}=\frac{-10}{2}=-5\)

\(\Rightarrow a=x_1=22\)\(c=x_2=-5\)

mà \(-b=c\)\(\Rightarrow b=-c=-\left(-5\right)=5\)

Vậy chiều dài là 22m, chiều rộng là 5m

14 tháng 6 2020

yes minh ngĩ thế .

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Gọi chiều rộng mảnh đất là $a$ (m) thì chiều dài mảnh đất là $a+8$ (m) 

Diện tích: $a(a+8)=384$

$\Leftrightarrow a^2+8a-384=0$

$\Leftrightarrow (a-16)(a+24)=0$

$\Rightarrow a=16$ (do $a>0$)

Vậy chiều rộng mảnh đất là $16$ m, chiều dài mảnh đất là $16+8=24$ m

3 tháng 4 2022

https://hoc24.vn/cau-hoi/.5660716496676 hỗ trợ em với chị :<

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)

=> chiều dài mảnh đất là x+6 (m)

Theo định lý Pytago ta có độ dài đường chéo là:

x2+(x+6)2=2x2+12x+36(m)2x2+12x+36=654.x2x2+12x+36=6516x23316x2+12x+36=0x=8(m)x=2411(ktm)S=x.(x+6)=8.(8+6)=112(m2)x2+(x+6)2=2x2+12x+36(m)⇒2x2+12x+36=654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒[x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)

Vậy diện tích mảnh đất là 112m2

25 tháng 1 2022

loading...  

1 tháng 5 2022

Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng là 6 m và diện tích hình chữ nhật bằng 280 m . Tinh chiều dài và chiều rộng của mảnh đất.

Giải

Gọi x ( m ) là chiều dài của mảnh đất hình chữ nhật ( x ∈ N* )

Suy ra chiều rộng của mảnh đất hình chữ nhật là: x - 6 ( m ) 

Vì diện tích mảnh đất hình chữ nhật là 280 m2 nên ta có phương trình:

      x ( x - 6 ) = 280 

⇔ x2 - 6x - 280 = 0 

Ta có: △ = b'- ac =  ( -3 )2 - 1 . ( -280 ) = 289

Vì △ = 289 > 0 nên phương trình có 2 nghiệm phân biệt 

\(x_1=\dfrac{-b'+\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)+\sqrt{289}}{1}=20\) ( nhận )

\(x_2=\dfrac{-b'-\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)-\sqrt{289}}{1}=-14\) ( loại )

Vậy chiều dài của mảnh đất hình chữ nhật là: 20 ( m )

Suy ra chiều rộng của mảnh đất hình chữ nhật là: 20 - 6 = 14 ( m ) 

 

 
1 tháng 5 2022

Giải:

Gọi chiều dài của mảnh đất là a (m) (a>6)

Do chiều dài lớn hơn chiều rộng là 6m nên chiều rộng của mảnh đất là: a-6 (m)

Vì diện tích khu vườn là 280m nên ta có phương trình: a.(a-6)=280

<=> a^2-6a-280=0 (1)

Xét: Delta= (-6)^2 -4.(-280)=1156>0 => phương trình (1) luôn có 2 nghiệm phân biệt:

a1= 20 (thỏa mãn) và a2=-14 (loại) 

Vậy chiều dài mảnh vườn là 20m và chiều rộng mảnh vườn là 20-6=14m

Gọi chiều rộng là x

=>Chiều dài là x+13

Theo đề, ta có: x(x+13)=140

=>x^2+13x-140=0

=>(x+20)(x-7)=0

=>x-7=0

=>x=7

=>Chiều dài là 20m

11 tháng 4 2022

Gọi chiều dài hình chữ nhật là x ( m )    ( x>7 ) 

=> Chiều rộng hình chữ nhật đó là: x-7 ( m )

Theo đề bài ta có pt:

\(x\left(x-7\right)=114\)

\(\Leftrightarrow x^2-7x-114=0\)

\(\Delta=\left(-7\right)^2-4.-114=505>0\)

\(\left\{{}\begin{matrix}x_1=\dfrac{7+\sqrt{505}}{2}\left(tm\right)\\x_2=\dfrac{7-\sqrt{505}}{2}\left(ktm\right)\end{matrix}\right.\)

=> Chiều rộng hình chữ nhật là: \(\dfrac{7+\sqrt{505}}{2}-7=\dfrac{-7+\sqrt{505}}{2}\left(m\right)\)