Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
câu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)
\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)
\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)
\(=-2x^2+2x+6\)
\(=-2\left(x^2-x-3\right)\)
b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)
\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)
\(=x^4+4x^2+4-x^4+16\)
\(=4x^2+20\)
\(=4\left(x^2+5\right)\)
c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)
\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)
\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)
\(=-7x^2-20xy-17y^2+1\)
d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^4+3x^2\)
\(=-3x^2\left(x^2-1\right)\)
\(=-3x^2\left(x-1\right)\left(x+1\right)\)
e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)
\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)
\(=\left(2x-1-2x-1\right)^2\)
\(=\left(-2\right)^2=4\)
g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y+z\right)^2\)
\(=\left(x+2z\right)^2\)
h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)
\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)
\(=\left(2x+3-2x-5\right)^2\)
\(=\left(-2\right)^2=4\)
i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)
\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)
\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)
\(=5x^2+2x^2+3x-1-3x-3\)
\(=7x^2-4\)
\(a,\frac{15x^2y^4}{5x^3z}=\frac{3y^4}{x}\)
\(b,\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
\(c,\frac{5x^2+10xy+5y^2}{15x+15y}=\frac{5\left(x^2+2xy+y^2\right)}{15\left(x+y\right)}=\frac{5\left(x+y\right)^2}{15\left(x+y\right)}=\frac{x+y}{3}\)
\(d,\frac{2x^3-2}{11x^2-22x+11}=\frac{2\left(x^3-1\right)}{11\left(x^2-2x+1\right)}=\frac{2\left(x-1\right)\left(x^2+x+1\right)}{11\left(x-1\right)^2}=\frac{2\left(x^2+x+1\right)}{11\left(x-1\right)}\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)
2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)
\(\frac{2x}{3y}.\frac{3y}{2x}=1\)
3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)
4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)
5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)
7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)
Vậy (x2 – 4x – 3)(2x2 – 5x + 1) = 2x4 - 13x3 + 15x2 + 11x – 3