Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G
=> G là trọng tâm của tam giác
=> GB = BM; GC = CN
mà BM = CN (giả thiết) nên GB = GC
=> ∆GBC cân tại G => ˆGCB=ˆGBCGCB^=GBC^
do đó ∆BCN = ∆CBM vì:
BC là cạnh chung
CN = BM (gt)
ˆGCB=ˆGBCGCB^=GBC^ (cmt)
=> ˆNBC=ˆMCBNBC^=MCB^ => ∆ABC cân tại A
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác => GB = BM; GC = CN mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G => do đó ∆BCN = ∆CBM vì: BC là cạnh chung CN = BM (gt) (cmt) => => ∆ABC cân tại A
định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau
giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB)
suy ra B=C và
AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC
xét tam giác DBC và tam giác ECB có:
EB=DC(cmt)
BC(chung)
B=C(tam giác ABC cân tại A)
suy ra tam giac sDBC=ACB(c.g.c)
suy ra EC=BD
Vào link này nhé !!!
Câu hỏi của Võ Văn Phúc Đường - Toán lớp 7 - Học toán với OnlineMath
A B C E D
-Tam giác ABC cân tại A có BE và CD là 2 đtt
=> AB=AC => AE=AD
Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC
=> ABE=ACD (c g c)
=>BE=CD
-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G
=> EG=DG , BG=CG
\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG
=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)
=>BD=EC
Xét \(\Delta EBC\) và \(\Delta DCB\) có: BE=CD , BC chung, BD=EC
=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)
=>\(\widehat{EBC}=\widehat{DCB}\)
=> TgABC cân tại A (đpcm)
Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.
⇒ G là trọng tâm của tam giác
Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.
Xét ΔGNB và ΔGMC có :
GN = GM (cmt)
GB = GC (cmt)
⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.
Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)
⇒ AB = AC ⇒ ΔABC cân tại A.