K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Đáp án C

Do thi đấu vòng tròn 1lượt nên 2 đột bất kỳ chỉ đấu với nhau đúng 1 trận. Số trận đấu của giải là S69JXoaWwVib.png

Tổng số điểm của 2 đội trong 1 trận hòa là 2 nên tổng số điểm của 23 trận hòa là B8tjc2QQthrN.png

Tổng số điểm của 2 đội trong 1 trận không hòa là 3 nên tổng số điểm của 68 trận không hòa là FPvtIonsTP5E.png

Vậy số điểm trung bình của 1 trận là wJNAPo4CWPVp.png(điểm)

2 tháng 1 2017

Đáp án B.

Tổng số trận đấu trong giải đấu là: 5477lYNs5XlS.png

Sau mỗi trận hòa, tổng số điểm 2 đội nhận được là 1.2 =2.

Sau mỗi trận không hòa, tổng số điểm 2 đội nhận được là 3 + 0 = 3.

 

Tổng số điểm của tất cả các đội sau khi kết thúc giải đấu là:

65.2 + (182 – 65).3 = 481.

8 tháng 12 2018

Đáp án A

Số vòng đấu là BekV46gryejE.png vòng đấu (gồm cả lượt đi và về)

Mỗi vòng đấu có 7 trận đấu

Do đó có tất cả okz28EyGPaea.png trận đấu

18 tháng 9 2019

2 : cho ab=cd(a,b,c,d0)ab=cd(a,b,c,d≠0) và đôi 1 khác nhau, khác đôi nhau

Chứng minh :

a) C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

\(\frac{a-b}{a+b}=\frac{kb-b}{kb+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)

\(\frac{c-d}{c+d}=\frac{kd-d}{kd+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}\frac{k-1}{k+1}\)

Bài 1: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)

Do đó: x=60; y=45; z=40

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

Số trận tất cả là:

6*8=48(trận)