K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Đặt m = x - 1 .Điều kiện : m ≥ 0, x  ≥  1

Ta có : x -  x - 1 -3 = 0 ⇔ (x -1) - x - 1  -2 =0

⇔  m 2  -m - 2 =0

Phương trình  m 2  -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng

a – b + c = 0

Suy ra :  m 1  = -1 (loại) ,  m 2  = -(-2)/1 = 2

Với m =2 ta có: x - 1  =2 ⇒ x -1 =4 ⇔ x =5

Giá trị của x thỏa mãn điều kiện bài toán

 

Vậy phương trình đã cho có 1 nghiệm : x=5

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

ĐK  \(x\ge0\)

Đặt \(x=a,x+1=b\)

\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)

<=> 4a3b+6a2b2+4ab3=0

<=> ab(2a2+3ab+2b2)=0

=>ab=0 (vì 2a2+3ab+2b2>0)

=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy.............................

20 tháng 11 2015

vào câu hỏi tương tự nhé bạn

30 tháng 8 2019

ĐK: \(x>-1\)

\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)

\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)

.Làm nốt. 

~Ko chắc~

30 tháng 8 2019

À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)

7 tháng 4 2017

a, Đặt \(x^2-2x=t\)
Phương trình đã cho trở thành:
\(2t^2+3t+1=0\)
Có a-b+c = 2-3+1 = 0
=> Phương trình có 2 nghiệm: \(t_1=-1;t_2=-\dfrac{1}{2}\)
Với t= -1 ta có \(x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Với t= -1/2 ta có \(x^2-2x=-\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{2}}{2}\\x=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\dfrac{2+\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right\}\)

b, ĐK: x khác 0
Đặt \(x+\dfrac{1}{x}=t\)
Phương trình đã cho trở thành: \(t^2-4t+3=0\)
Có a+b+c=1-4+3=0
=> Phương trình có 2 nghiệm \(t_1=1;t_2=3\)
• Với t=1 ta có \(x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Delta=1^2-4.1=-3< 0\) nên pt vô nghiệm
• Với t=3 ta có \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\) (TMĐK)
Vậy tập nghiệm của pt đã cho là \(S=\left\{\dfrac{3+\sqrt{5}}{2};\dfrac{3-\sqrt{5}}{2}\right\}\)

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

4 tháng 4 2017

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =



14 tháng 10 2017

\(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)

Đặt \(\hept{\begin{cases}\sqrt[3]{2x+1}=a\\\sqrt[3]{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b=1\\a^3-2b^3=1\end{cases}}\)

\(\Rightarrow a^3-2\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-2a^2+2a-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2-a+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt[3]{2x+1}=1\\\sqrt[3]{x}=0\end{cases}}\)

\(\Leftrightarrow x=0\)

15 tháng 10 2017

\(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)1

Đặt chug ở:\(\hept{\begin{cases}\sqrt[3]{2x+1=a}\\\sqrt[3]{x}=b\end{cases}}\)

=> Ta có:\(\hept{\begin{cases}\sqrt[a+b=1]{a^3-2b^3=1}\\\end{cases}}\)

=>\(a^3-2\left(1-a\right)^3=1\)

=>\(a^3-2a^2+2a-1=0\)

=>\(\left(a-1\right)\left(a^2-a+1=0\right)\)

=>\(\Leftrightarrow a=1;b=0\)

\(\Leftrightarrow x=0\)