K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

5x2 + 2x = 4 – x

⇔ 5x2 + 2x + x – 4 = 0

⇔ 5x2 + 3x – 4 = 0

Phương trình bậc hai trên có a = 5; b = 3; c = -4.

4 tháng 4 2017

a) 5x2 + 2x = 4 – x ⇔ 5x2 + 3x – 4 = 0; a = 5, b = 3, c = -4

b) x2 + 2x – 7 = 3x + x2 – x - = 0, a = , b = -1, c = -

c) 2x2 + x - √3 = √3 . x + 1 ⇔ 2x2 + (1 - √3)x – 1 - √3 = 0

Với a = 2, b = 1 - √3, c = -1 - √3

d) 2x2 + m2 = 2(m – 1)x ⇔ 2x2 - 2(m – 1)x + m2 = 0; a = 2, b = - 2(m – 1), c = m2



a: \(\Leftrightarrow4x^2-3x+7=0\)

a=4; b=-3; c=7

b: \(\Leftrightarrow\sqrt{5}x^2-x^2+5x-3-3x+4=0\)

\(\Leftrightarrow x^2\cdot\left(\sqrt{5}-1\right)+2x+1=0\)

\(a=\sqrt{5}-1;b=2;c=1\)

c: \(\Leftrightarrow mx^2-x^2-3x+mx+5=0\)

\(\Leftrightarrow x^2\left(m-1\right)+x\left(m-3\right)+5=0\)

a=m-1; b=m-3; c=5

d: \(\Leftrightarrow m^2x^2-x^2+x+m-mx-m-2=0\)

\(\Leftrightarrow x^2\left(m^2-1\right)+x\left(1-m\right)-2=0\)

\(a=m^2-1;b=1-m;c=-2\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

a)

\(3x^2-5x+1=2x-3\)

\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)

\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)

b)

\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)

\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)

\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)

c)

\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)

\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)

(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)

d)

\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)

(\(a=1;b=-5(m+1); c=m^2-2)\)

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

20 tháng 4 2019

a) phương trình có a.c=3.(-8)=-24<0
vì a.c <0 nên phương trình có 2 nghiệm
b) phương trình có \(a.c=2004.\left(-1185\sqrt{5}\right)< 0\)
vì a.c<0 nên phương trình có 2 nghiệm
c) phương trình có \(a.c=3\sqrt{2}.\left(\sqrt{2}-\sqrt{3}\right)=6-3\sqrt{6}< 0\)
vì a.c<o nên phương trình có 2 nghiệm
d)phương trình có a.c=2010.(-m2)=-2010m2<0
vì a.c<0 nên phuong trình có 2 nghiệm

3 tháng 6 2018

Để 2 pt \(x^2+ax+bc=0\)(1) 

         và \(x^2+bc+c=0\)  (2)

thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)

Gọi 2 nghiệm của pt (1) là \(x_0\)\(x_1\)và 2 nghiệm của pt (2) là \(x_0\)\(x_2\)

( Nghiệm chung là \(x_0\))

Theo Vi-et , ta có :

\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và    \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)

Suy ra :

\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)

Vì \(x_1=b\)và  \(x_0.x_1=bc\)nên \(x_0=c\)

Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)

                                                                                   Mà \(x_1.x_2=ab\)

Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)