K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a) Hình vuông thứ nhất có cạnh bằng nên u1 = ()2 = .

Hình vuông thứ hai có cạnh bằng nên u2 = ()2 = .

Hình vuông thứ ba có cạnh bằng nên u3 = ()2 = .

Tương tự, ta có un =

b) Dãy số (un) là một cặp số nhân lùi vô hạn với u1 = và q = . Do đó

lim Sn = .

23 tháng 1 2022

:(

9 tháng 4 2017

Xét dãy số (an), ta có a1 = 4.

Giả sử hình vuông cạnh Cn có độ dài cạnh là an. Ta sẽ tính cạnh an+1 của hình vuông Cn+1. Theo hình 9, áp dụng định lí Pi-ta-go, ta có:

an+1 = với n ε N*.

Vậy dãy số (an) là cấp số nhân với số hạng đầu là a1 = 4 và công bội q =



31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

16 tháng 8 2016

bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :) 

 

16 tháng 8 2016

thuộc ban nhé. có lẽ mình ghi sai

 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây : - Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1)  - Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo...
Đọc tiếp

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây :

- Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1) 

- Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo cách trên, kí hiệu là (2) (H2)

- Bước 3 : Với 4 tam giác vuông cân mầu trắng như trong hình 2, ta lại tạo được 4 hình vuông với mầu xám theo cách trên (H3)

- ..........

- Bước n : Ở bước này ta có \(2^{n-1}\) hình vuông với mầu sám được tạo thành theo cách trên, kí hiệu là (n)

a) Gọi \(u_n\) là tổng diện tích của tất cả các hình vuông mới được tạo thành ở bước thứ n.

Chứng minh rằng :

               \(u_n=\dfrac{1}{2^{n+1}}\)

b) Gọi \(S_n\) là tổng diện tích của tất cả các hình vuông mầu xám có được sau n bước. Quan sát hình vẽ để dự đoán giới hạn của \(S_n\) khi \(n\rightarrow+\infty\). Chứng minh dự đoán đó ?

1
18 tháng 1 2022

A B C D M N P Q

a/ Trong mp (BCD) dựng đường thẳng // với CD cắt BD tại P => CD//NP (1)

=> mp (MNP) là mp \(\alpha\)

Trong mp (ACD) từ M dựng đường thẳng //CD cắt AC tại Q => CD//MQ (2)

Từ (1) và (2) => NP//MQ => MPNQ là thiết diện của tứ diện ABCD với mp \(\alpha\)

b/

Xét tg ACD có

MQ//CD và MA=MD => QA=QC (trong tam giác đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại của tam giác => MQ là đường trung bình của tg ACD \(\Rightarrow MQ=\frac{CD}{2}\)

Ta có MQ//NP để MPNQ là hình bình hành thì \(MQ=NP=\frac{CD}{2}\) (tứ giác có 1 cặp cạnh đối // và = nhau thì tứ giác là hbh)

=> NP là đường trung bình của tg BCD => N là trung điểm của BC