K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0 2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2) 3, Phương trình cos2x.sin5x+1=0 có...
Đọc tiếp

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng

A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0

2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng

A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2)

3, Phương trình cos2x.sin5x+1=0 có mấy nghiệm thuộc đoạn \([\)\(\frac{-\pi}{2}\);2\(\pi\)]

4,Phương trình cos\(\frac{5x}{2}\).cos\(\frac{x}{2}\)-1=sin4x.sin2x có mấy nghiệm thuộc [-100\(\pi\);100\(\pi\)]

5, Phương trình 5+\(\sqrt{3}\) sinx(2cosx-3)=cosx(2cosx+3) có mấy nghiệm thuộc khoảng (0;10pi)

6, Gọi S là tập hợp các nghiệm thuộc khoảng (0;100pi) của phương trình (sin\(\frac{x}{2}\)+cos\(\frac{x}{2}\))\(^2\)+căn 3.cosx=3.Tính tổng phần tử S

7, Gọi x0 là nghiệm dương min của cos2x+\(\sqrt{3}\)sin2x+\(\sqrt{3}\)sĩn-cosx=2. Mệnh đề nào sau đây đứng

A.(0;pi/12) B.[pi/12;pi/6] C(pi/6;pi/3] D.(pi/3;pi/2]

8,Phương trình 48-\(\frac{1}{cos^4x}\)-\(\frac{2}{sin^2x}\)(1+cot2x.cotx)=0 có mấy nghiệm

9, GỌI S là tập hợp tất cả các giá trị nguyên của tham số m để pt 3\(\sqrt{sinx+cosx+2}\)+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))+m-1=0 có nghiệm .số phần tử của S là

9
NV
18 tháng 10 2020

1.

Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)

\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)

\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)

\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)

\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)

\(\Rightarrow9M+m=0\)

NV
18 tháng 10 2020

2.

\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)

\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)

\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)

\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)

\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)

\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)

\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)

\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)

Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)

Đáp án A

NV
12 tháng 8 2020

3.

Hàm trùng phương \(f\left(x\right)=ax^4+bx^2+c\) với \(a\ne0\) đồng biến trên \(\left(0;+\infty\right)\) khi và chỉ khi:

\(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Leftrightarrow m\ge0\)

Hoặc giải bt: \(y'=4x^3+2mx\ge0\) ;\(\forall x>0\)

\(\Leftrightarrow2x\left(x^2+m\right)\ge0\)

\(\Leftrightarrow x^2+m\ge0\)

\(\Leftrightarrow x^2\ge-m\)

\(\Leftrightarrow-m\le min\left(x^2\right)=0\Rightarrow m\ge0\)

NV
12 tháng 8 2020

1.

Giả sử tiếp tuyến d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2>0\)

\(\Rightarrow cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|a-2b\right|}{\sqrt{\left(a^2+b^2\right)\left(1^2+\left(-2\right)^2\right)}}=\frac{\left|a-2b\right|}{\sqrt{5\left(a^2+b^2\right)}}\)

\(\Leftrightarrow4\left(a-2b\right)^2=15\left(a^2+b^2\right)\)

\(\Leftrightarrow11a^2+16ab-b^2=0\)

Nghiệm xấu quá nhìn muốn nản, bạn tự làm tiếp :)

2.

\(y'=cosx-2sinx+2m-5\)

Hàm số đồng biến trên TXĐ khi và chỉ khi \(y'\ge0\) ; \(\forall x\)

\(\Leftrightarrow cosx-2sinx+2m-5\ge0\) ;\(\forall x\)

\(\Leftrightarrow2m-5\ge2sinx-cosx\)

\(\Leftrightarrow2m-5\ge f\left(x\right)_{max}\) với \(f\left(x\right)=2sinx-cosx\)

Ta có: \(f\left(x\right)=2sinx-cosx=\sqrt{5}\left(\frac{2}{\sqrt{5}}sinx-\frac{1}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\)

Với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2}{\sqrt{5}}\)

\(\Rightarrow f\left(x\right)\le\sqrt{5}\Rightarrow2m-5\ge\sqrt{5}\Rightarrow m\ge\frac{5+\sqrt{5}}{2}\)

NV
23 tháng 8 2020

Hàm số xác định trên R khi và chỉ khi:

\(2cos^2x-m.sinx+1>0\) ;\(\forall x\)

\(\Leftrightarrow2-2sin^2x-m.sinx+1>0\) ;\(\forall x\)

\(\Leftrightarrow-2sin^2x-m.sinx+3>0\)

Đặt \(sinx=t\Rightarrow f\left(t\right)=-2t^2-m.t+3>0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)>0\)

Do \(a=-2< 0\Rightarrow f\left(t\right)_{min}\) luôn rơi vào 1 trong 2 đầu mút của đoạn

\(f\left(-1\right)=m+1\) ; \(f\left(1\right)=1-m\)

TH1: \(f\left(t\right)_{min}=m+1\Rightarrow\left\{{}\begin{matrix}m+1>0\\1-m\ge m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m\le0\end{matrix}\right.\) \(\Leftrightarrow-1< m\le0\)

TH2: \(f\left(t\right)_{min}=1-m\Rightarrow\left\{{}\begin{matrix}1-m>0\\m+1\ge1-m\end{matrix}\right.\) \(\Rightarrow0\le m< 1\)

Vậy \(-1< m< 1\)

Có duy nhất 1 giá trị nguyên của m thỏa mãn (m=0)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác