Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Trong ba tia OA, OM, ON tia OM nằm giữa hai tia OA và ON
b, Ta có \(\widehat{AOB}=\widehat{AOM}+\widehat{MON}+\widehat{BON}\)
\(=40^o+30^o+50^o\)
\(=120^o\)
Nhớ k cho mình nhé
1) \(\frac{145.146-15}{145.145+130}=\frac{145.145+145-15}{145.145+130}=\frac{145.145+130}{145.145+130}=1\)
2) \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{31.34}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}=1-\frac{1}{34}=\frac{33}{34}\)
#)Giải :
A O B C M N
Vì OC là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOC}=\widehat{BOC}=\frac{\widehat{AOB}}{2}=\frac{144^o}{2}=72^o\)
Ta có :
\(\widehat{AOC}=72^o\Rightarrow\widehat{MOC}=\widehat{NOC}=52^o\)
\(\Rightarrow\)OC là tia phân giác của \(\widehat{MON}\)
b) (P/s : Hình như ý này hơi thừa :v)
c) Vì \(\widehat{AOB}=144^o;\widehat{AOC}=72^o;\widehat{BOC}=72^o\)
\(\Rightarrow\widehat{AOB}>\widehat{AOC}=\widehat{BOC}\)
O N M A B
Trên cùng một nửa mp bờ OA có:
AOB < AON (90o < 150o)
=> OB nằm giữa ON và OA
=> AOB + BON = AON
=> 90o + BON = 150o
=> BON = 60o
Vì O nằm trên đường thẳng a
Và OM và ON là 2 tia đối nhau
=> NOA và AOM là 2 góc kề bù
=> NOA + AOM = 180o
=> 150o + AOM = 180o
=> AOM = 30o
Vì O nằm trên đường thẳng a
Và OM và ON là 2 tia đối nhau
=> MOB và BON là 2 góc kề bù
=> MOB + BON = 180o
=> MOB + 60o = 180o
=> MOB = 120o
a) Tự zẽ hình nha
ta có\(\widehat{bOc}=\widehat{bOa}-\widehat{cOa}\)
=>\(\widehat{bOc}=120^0-100^0=20^0\)
b)\(tacó\hept{\begin{cases}\widehat{bOm}=\widehat{bOa}-\widehat{mOa}=120^0-110^0=10^0\\\widehat{mOc}=\widehat{mOa}-\widehat{cOa}=120^0-110^0=10^0\end{cases}}\)
=>\(\widehat{bOm}=\widehat{mOc}\left(1\right)\)
ta lại có \(\widehat{bOa}>\widehat{mOc}>\widehat{cOa}\)
=>\(mO\)nằm giữa 2 tia \(Ob\)zà \(Oc\left(2\right)\)
từ 1 zà 2 suy ra
mO là tia phân giác của góc \(bOc\)
Dựa vào tính chất cộng góc, ta tính được B O M ^ = 90 ° từ đó tính được B O N ^ = 40 ° vậy M O N ^ > B O N ^