Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
a, ĐKXĐ : x + 3 khác 0 => x khác - 3
b, x^2-9/x+3 = 5
=> x^2 - 9 = 5(x + 3)
=> x^2 - 9 = 5x + 15
=> x^2 - 5x - 9 - 15 = 0
=> x^2 - 5x - 24 = 0
=> x^2 + 3x - 8x - 24 = 0
=> x(x + 3) - 8(x + 3) = 0
=> (x - 8)(x + 3) = 0
=> x = 8 hoặc x = -3
c, x^2-9/x+3 = -6
=> x^2 - 9 = -6(x+3)
=> x^2 - 9 = -6x - 18
=> x^2 + 6x - 9 + 18 = 0
=> x^2 + 6x + 9 = 0
=> (x + 3)^2 = 0
=> x + 3 = 0
=> x = -3 (ktm)
vậy không có....
Đặt \(A=\frac{x^2-9}{x+3}\)
a) A xác định khi \(x+3\ne0\Leftrightarrow x\ne-3\)
b) A=\(\frac{x^2-9}{x+3}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)
Để A=5 => x-3=5 => x=8 (TMĐK)
c) Có A=x-3 \(\left(x\ne-3\right)\)
\(\Rightarrow x+3=-6\)
\(\Rightarrow x=-9\)(TMĐK)
Vậy có gt của x để A nhận giá trị bằng -6
phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha
Ta có :
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^2=1\)
\(\Rightarrow x^2+2xy+y^2=1\)
\(\Rightarrow85+2xy=1\)
\(\Rightarrow2xy=-84\)
\(\Rightarrow xy=-42\) (1)
Mặt khác : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) (2)
Thay (1) vào (2)
=>\(x^3+y^3=1\left(85-\left(-42\right)\right)=127\)
Vậy x^3 + y^3 = 27
Ta có: \(x^2+y^2=85=>\left(x+y\right)^2-2xy=85\)
\(=>1-2xy=85=>2xy=-84=>xy=-42\)
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=>x^3+y^3=1\left(85+42\right)=127\)
\(P=\frac{n^3+2n-1}{n^3+2n^2+2n+1}\)
\(=\frac{n^3+2n-1}{\left(n^3+1\right)+\left(2n^2+2n\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2+n+1\right)}\)
Để phân thức xác định thì \(n+1\ne0\Rightarrow n\ne1\)
(vì \(n^2+n+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\))
Đặt phép chia đc x4+x3+ax2+(a+b)x+2b+1=(x3+ax+b)(x+1)+(b+1)
Để..chia hết cho... thì b+1=0=>b=-1 (a tùy ý)
Vậy a tùy ý;b=-1
a) Điều kiện xác định của \(P\) là:
\(\left(x+1\right)\left(2x-6\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) (\(x\ne-1,x\ne3\))
\(=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)
\(P=1\Rightarrow\dfrac{3x}{2\left(x-3\right)}=1\Rightarrow3x=2\left(x-3\right)\Leftrightarrow x=-6\) (thỏa mãn)
c) \(P>0\Rightarrow\dfrac{3x}{2\left(x-3\right)}>0\Leftrightarrow\dfrac{x}{x-3}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
Kết hợp với điều kiện xác định ta được để \(P>0\) thì \(x>3\) hoặc \(x< 0,x\ne-1\).